On-Board Satellite Telemetry Forecasting with RNN on RISC-V Based Multicore Processor

Danilo Cappellone, Stefano Di Mascio, G. Furano, A. Menicucci, M. Ottavi
{"title":"On-Board Satellite Telemetry Forecasting with RNN on RISC-V Based Multicore Processor","authors":"Danilo Cappellone, Stefano Di Mascio, G. Furano, A. Menicucci, M. Ottavi","doi":"10.1109/DFT50435.2020.9250796","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to assess the feasibility and on-board hardware performance requirements for on-board telemetry forecasting by implementing a Recurrent Neural Network (RNN) on low-cost multicore RISC-V microprocessor. Gravity field and steady-state Ocean Circulation Explorer (GOCE) public telemetry data was used for training RNNs with different hyperparameters and architectures. The prediction accuracy of these models was evaluated using mean error and R-squared score on the same test dataset. The implementation of the RNN on a RISC-V embedded device, representative of future space-grade hardware, required some adaptations and modifications due to the computational requirements and the large memory footprint. The algorithm was implemented to run in parallel on the 8 cores of the microprocessor and tiling was employed for the weight matrices. Further considerations have also been made for the approximation of sigmoid and hyperbolic tangent as activation functions.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The aim of this paper is to assess the feasibility and on-board hardware performance requirements for on-board telemetry forecasting by implementing a Recurrent Neural Network (RNN) on low-cost multicore RISC-V microprocessor. Gravity field and steady-state Ocean Circulation Explorer (GOCE) public telemetry data was used for training RNNs with different hyperparameters and architectures. The prediction accuracy of these models was evaluated using mean error and R-squared score on the same test dataset. The implementation of the RNN on a RISC-V embedded device, representative of future space-grade hardware, required some adaptations and modifications due to the computational requirements and the large memory footprint. The algorithm was implemented to run in parallel on the 8 cores of the microprocessor and tiling was employed for the weight matrices. Further considerations have also been made for the approximation of sigmoid and hyperbolic tangent as activation functions.
基于RISC-V多核处理器的RNN星载遥测预报
本文的目的是通过在低成本多核RISC-V微处理器上实现递归神经网络(RNN)来评估车载遥测预测的可行性和车载硬件性能要求。利用重力场和稳态海洋环流探测器(GOCE)的公共遥测数据,训练具有不同超参数和结构的rnn。在相同的测试数据集上,使用平均误差和r平方分数来评估这些模型的预测精度。RNN在RISC-V嵌入式设备(未来空间级硬件的代表)上的实现,由于计算需求和大内存占用,需要进行一些调整和修改。该算法在8核微处理器上并行运行,权重矩阵采用平铺法。进一步考虑了s型曲线和双曲正切曲线作为激活函数的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信