K. El boubkari, S. Azzopardi, L. Théolier, J. Delétage, E. Woirgard
{"title":"2D finite elements electro-thermal modeling for IGBT: Uni and multicellular approach","authors":"K. El boubkari, S. Azzopardi, L. Théolier, J. Delétage, E. Woirgard","doi":"10.1109/ESIME.2012.6191757","DOIUrl":null,"url":null,"abstract":"In this paper, insulated gate bipolar transistor (IGBT) models in the literature are reviewed, analyzed, and classified in different categories. We compare unicellular and multicellular modeling for the hard-switching between finite elements electro-thermal simulations applied on a silicon power transistor and we show the advantages of multicellular modeling applying on a planar gate non punch through IGBT (PG-NPT-IGBT). It appears that degradation of one or more cells shows intercellular electrical phenomena which can lead to failure of components.","PeriodicalId":319207,"journal":{"name":"2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2012.6191757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, insulated gate bipolar transistor (IGBT) models in the literature are reviewed, analyzed, and classified in different categories. We compare unicellular and multicellular modeling for the hard-switching between finite elements electro-thermal simulations applied on a silicon power transistor and we show the advantages of multicellular modeling applying on a planar gate non punch through IGBT (PG-NPT-IGBT). It appears that degradation of one or more cells shows intercellular electrical phenomena which can lead to failure of components.