Estimation of single-event transient pulse characteristics for predictive analysis

T. Assis, J. Kauppila, B. Bhuva, peixiong zhao, L. Massengill, R. Wong, S. Wen
{"title":"Estimation of single-event transient pulse characteristics for predictive analysis","authors":"T. Assis, J. Kauppila, B. Bhuva, peixiong zhao, L. Massengill, R. Wong, S. Wen","doi":"10.1109/IRPS.2016.7574641","DOIUrl":null,"url":null,"abstract":"In this paper a methodology to predict single-event transient (SET) pulse characteristics is proposed. Analytical models and technology pre-characterization are used to estimate SET pulse-widths for different standard cells. The model uses graph analysis of the cell netlist to identify similar circuit structures for reduced computational complexity for the characterization of standard cells. The error between the proposed model and simulations is between 3% and 9.3%. Model predictions are also compared with results from heavy-ion experiments for a test chip fabricated at the 65-nm technology node showing excellent agreement. The proposed model will allow designers to model effects of soft errors at the circuit-level during the design phase.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper a methodology to predict single-event transient (SET) pulse characteristics is proposed. Analytical models and technology pre-characterization are used to estimate SET pulse-widths for different standard cells. The model uses graph analysis of the cell netlist to identify similar circuit structures for reduced computational complexity for the characterization of standard cells. The error between the proposed model and simulations is between 3% and 9.3%. Model predictions are also compared with results from heavy-ion experiments for a test chip fabricated at the 65-nm technology node showing excellent agreement. The proposed model will allow designers to model effects of soft errors at the circuit-level during the design phase.
用于预测分析的单事件瞬态脉冲特性估计
本文提出了一种预测单事件瞬态(SET)脉冲特性的方法。分析模型和技术预表征用于估计SET脉冲宽度不同的标准细胞。该模型使用细胞网络表的图分析来识别相似的电路结构,以降低标准细胞表征的计算复杂性。模型与仿真结果的误差在3% ~ 9.3%之间。模型预测也与65纳米技术节点制造的测试芯片的重离子实验结果进行了比较,显示出极好的一致性。所提出的模型将允许设计人员在设计阶段对电路级的软误差的影响进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信