Advanced activation and stability of ultra-shallow junctions using flash-assisted RTP

J. Gelpey, S. Mccoy, W. Lerch, S. Paul, J. Niess, F. Cristiano, D. Bolze
{"title":"Advanced activation and stability of ultra-shallow junctions using flash-assisted RTP","authors":"J. Gelpey, S. Mccoy, W. Lerch, S. Paul, J. Niess, F. Cristiano, D. Bolze","doi":"10.1109/RTP.2005.1613685","DOIUrl":null,"url":null,"abstract":"Advanced-logic device technology for the 65 nm node and beyond requires highly-activated, shallow, and abrupt dopant profiles (Int. Technol. Roadmap for Semicond., 2003). The combination of ion implantation and an advanced annealing technology is expected to provide solutions for these requirements. In contrast to spike annealing, a diffusion-less but highly activating, high-temperature, flash-assisted RTP annealing approach for the formation of ultra-shallow junctions will be demonstrated. The flash-assisted RTP technique is a promising method for achieving junction depth and sheet resistance values low enough to meet the performance specifications for the 65 nm node and beyond (Gelpey, et al., 2002, McCoy, et al., 2004). The optimal process for high activation during flash-assisted RTP involves a temperature ramp-up to an intermediate temperature between 700degC and 900degC and, once the intermediate temperature is reached, a very short, intense flash on the front side of the wafer induces a temperature jump up to 1325degC with a peak width of approximately 1.6 ms in a 100 ppm oxygen in nitrogen gaseous ambient. In this paper, we will present some of our recent p+MOS and n+MOS results on the fabrication of ultra-shallow junctions using flash-assisted RTP in crystalline and pre-amorphized silicon. It will be shown that such junctions are suitable for future technology generations. The measured \"mechanical/electrical\" sheet resistance values of the junctions are compared to Hall measurements on the same samples to gain an insight into the reliability of the destructive four-point probe (4PP) method for such extremely shallow junctions. Deactivation studies will be presented to examine the stability of the process to the required subsequent thermal processes","PeriodicalId":253409,"journal":{"name":"2005 13th International Conference on Advanced Thermal Processing of Semiconductors","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 13th International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2005.1613685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Advanced-logic device technology for the 65 nm node and beyond requires highly-activated, shallow, and abrupt dopant profiles (Int. Technol. Roadmap for Semicond., 2003). The combination of ion implantation and an advanced annealing technology is expected to provide solutions for these requirements. In contrast to spike annealing, a diffusion-less but highly activating, high-temperature, flash-assisted RTP annealing approach for the formation of ultra-shallow junctions will be demonstrated. The flash-assisted RTP technique is a promising method for achieving junction depth and sheet resistance values low enough to meet the performance specifications for the 65 nm node and beyond (Gelpey, et al., 2002, McCoy, et al., 2004). The optimal process for high activation during flash-assisted RTP involves a temperature ramp-up to an intermediate temperature between 700degC and 900degC and, once the intermediate temperature is reached, a very short, intense flash on the front side of the wafer induces a temperature jump up to 1325degC with a peak width of approximately 1.6 ms in a 100 ppm oxygen in nitrogen gaseous ambient. In this paper, we will present some of our recent p+MOS and n+MOS results on the fabrication of ultra-shallow junctions using flash-assisted RTP in crystalline and pre-amorphized silicon. It will be shown that such junctions are suitable for future technology generations. The measured "mechanical/electrical" sheet resistance values of the junctions are compared to Hall measurements on the same samples to gain an insight into the reliability of the destructive four-point probe (4PP) method for such extremely shallow junctions. Deactivation studies will be presented to examine the stability of the process to the required subsequent thermal processes
使用闪光灯辅助RTP的超浅连接的高级激活和稳定性
用于65nm及以上节点的先进逻辑器件技术需要高度激活的、浅的和突然的掺杂物轮廓。抛光工艺。半秒路线图。, 2003)。离子注入和先进退火技术的结合有望为这些要求提供解决方案。与尖峰退火相反,将展示一种无扩散但高度活化,高温,闪光辅助的RTP退火方法,用于形成超浅结。闪存辅助RTP技术是一种很有前途的方法,可以实现结深度和片电阻值低到足以满足65 nm及以上节点的性能规格(Gelpey等人,2002年,McCoy等人,2004年)。在闪光灯辅助RTP过程中,高活化的最佳工艺包括温度上升到700°c到900°c之间的中间温度,一旦达到中间温度,晶圆片正面的极短,强烈的闪光灯会导致温度上升到1325°c,在100 ppm的氧气和氮气气体环境中,峰宽约为1.6 ms。在本文中,我们将介绍我们最近在使用闪存辅助RTP在晶体和预非晶硅中制造超浅结的p+MOS和n+MOS的一些结果。这将表明,这种连接适用于未来的技术世代。将测量的结的“机械/电气”片电阻值与相同样品上的霍尔测量值进行比较,以深入了解破坏性四点探头(4PP)方法对这种极浅结的可靠性。将提出失活研究,以检查该过程对所需后续热过程的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信