Solutions of nonlinear stochastic differential equations with 1/ƒ noise power spectrum

B. Kaulakys, J. Ruseckas
{"title":"Solutions of nonlinear stochastic differential equations with 1/ƒ noise power spectrum","authors":"B. Kaulakys, J. Ruseckas","doi":"10.1109/ICNF.2011.5994297","DOIUrl":null,"url":null,"abstract":"The special nonlinear stochastic differential equations generating power-law distributed signals and 1/ƒ noise are considered. The models involve the generalized Constant Elasticity of Variance (CEV) process, the Bessel process, the Squared Bessel process, and the Cox-Ingersoll-Ross (CIR) process, which are applied for modeling the financial markets, as well. In the paper, 1/ƒβ behavior of the power spectral density is derived directly from the nonlinear stochastic differential equations and the exact solutions for the particular CEV process are presented.","PeriodicalId":137085,"journal":{"name":"2011 21st International Conference on Noise and Fluctuations","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 21st International Conference on Noise and Fluctuations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNF.2011.5994297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The special nonlinear stochastic differential equations generating power-law distributed signals and 1/ƒ noise are considered. The models involve the generalized Constant Elasticity of Variance (CEV) process, the Bessel process, the Squared Bessel process, and the Cox-Ingersoll-Ross (CIR) process, which are applied for modeling the financial markets, as well. In the paper, 1/ƒβ behavior of the power spectral density is derived directly from the nonlinear stochastic differential equations and the exact solutions for the particular CEV process are presented.
具有1/ f噪声功率谱的非线性随机微分方程的解
考虑了产生幂律分布信号和1/ f噪声的特殊非线性随机微分方程。这些模型包括广义恒定弹性方差(CEV)过程、贝塞尔过程、平方贝塞尔过程和Cox-Ingersoll-Ross (CIR)过程,这些过程也用于金融市场建模。本文从非线性随机微分方程中直接导出了功率谱密度的1/ƒβ行为,并给出了特定CEV过程的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信