{"title":"Built-in self-diagnosis exploiting strong diagnostic windows in mixed-mode test","authors":"A. Cook, S. Hellebrand, H. Wunderlich","doi":"10.1109/ETS.2012.6233025","DOIUrl":null,"url":null,"abstract":"Efficient diagnosis procedures are crucial both for volume and for in-field diagnosis. In either case the underlying test strategy should provide a high coverage of realistic fault mechanisms and support a low-cost implementation. Built-in self-diagnosis (BISD) is a promising solution, if the diagnosis procedure is fully in line with the test flow. However, most known BISD schemes require multiple test runs or modifications of the standard scan-based test infrastructure. Some recent schemes circumvent these problems, but they focus on deterministic patterns to limit the storage requirements for diagnostic data. Thus, they cannot exploit the benefits of a mixed-mode test such as high coverage of non-target faults and reduced test data storage. This paper proposes a BISD scheme using mixed-mode patterns and partitioning the test sequence into “weak” and “strong” diagnostic windows, which are treated differently during diagnosis. As the experimental results show, this improves the coverage of non-target faults and enhances the diagnostic resolution compared to state-of-the-art approaches. At the same time the overall storage overhead for input and response data is considerably reduced.","PeriodicalId":429839,"journal":{"name":"2012 17th IEEE European Test Symposium (ETS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 17th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2012.6233025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Efficient diagnosis procedures are crucial both for volume and for in-field diagnosis. In either case the underlying test strategy should provide a high coverage of realistic fault mechanisms and support a low-cost implementation. Built-in self-diagnosis (BISD) is a promising solution, if the diagnosis procedure is fully in line with the test flow. However, most known BISD schemes require multiple test runs or modifications of the standard scan-based test infrastructure. Some recent schemes circumvent these problems, but they focus on deterministic patterns to limit the storage requirements for diagnostic data. Thus, they cannot exploit the benefits of a mixed-mode test such as high coverage of non-target faults and reduced test data storage. This paper proposes a BISD scheme using mixed-mode patterns and partitioning the test sequence into “weak” and “strong” diagnostic windows, which are treated differently during diagnosis. As the experimental results show, this improves the coverage of non-target faults and enhances the diagnostic resolution compared to state-of-the-art approaches. At the same time the overall storage overhead for input and response data is considerably reduced.