K. Koike, K. Kawai, A. Onozawa, Y. Kobayashi, H. Ichino
{"title":"Low-power design methodology for Gbit/s bipolar LSIs","authors":"K. Koike, K. Kawai, A. Onozawa, Y. Kobayashi, H. Ichino","doi":"10.1109/BIPOL.1995.493876","DOIUrl":null,"url":null,"abstract":"A low-power Gbit/s operating bipolar standard cell LSI design methodology is described. It features a performance-driven layout, highly accurate static timing analysis, and CAD-based optimization for power dissipation. A 5.6-k-gate SDH signal-processing LSI operates at 1.6 Gbit/s with only 3.9 W power consumption.","PeriodicalId":230944,"journal":{"name":"Proceedings of Bipolar/Bicmos Circuits and Technology Meeting","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Bipolar/Bicmos Circuits and Technology Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIPOL.1995.493876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A low-power Gbit/s operating bipolar standard cell LSI design methodology is described. It features a performance-driven layout, highly accurate static timing analysis, and CAD-based optimization for power dissipation. A 5.6-k-gate SDH signal-processing LSI operates at 1.6 Gbit/s with only 3.9 W power consumption.