GC-IGTG: A Rehabilitation Gait Trajectory Generation Algorithm for Lower Extremity Exoskeleton

Yong He, Xinyu Wu, Yue Ma, Wujing Cao, Nan Li, Jinke Li, Wei Feng
{"title":"GC-IGTG: A Rehabilitation Gait Trajectory Generation Algorithm for Lower Extremity Exoskeleton","authors":"Yong He, Xinyu Wu, Yue Ma, Wujing Cao, Nan Li, Jinke Li, Wei Feng","doi":"10.1109/ROBIO49542.2019.8961762","DOIUrl":null,"url":null,"abstract":"It is important to offer a natural and personalized rehabilitation gait trajectory, especially in the early stages of walking rehabilitation, for the patients with lower limb disability. Lower extremity exoskeleton has been proven to be efficient to provide highly repeatable and accurate rehabilitation exercise, but most existing exoskeletons’ gait trajectories won’t vary with the users. This paper proposes an algorithm, named as gait cell based individualized gait trajectory generation (GC-IGTG), for the purpose of offering a natural and personalized gait trajectory reference for the lower extremity exoskeleton based on the body parameters of the patients. The GC-IGTG is based on extreme learning machine and AutoEncoder, which makes it achieve fast training speed and suitable for small sample training conditions. The gait cell concept is proposed to improve the efficiency and safety of the algorithm. The experimental results indicate that the generated trajectories with GC-IGTG are almost identical to the original ones.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

It is important to offer a natural and personalized rehabilitation gait trajectory, especially in the early stages of walking rehabilitation, for the patients with lower limb disability. Lower extremity exoskeleton has been proven to be efficient to provide highly repeatable and accurate rehabilitation exercise, but most existing exoskeletons’ gait trajectories won’t vary with the users. This paper proposes an algorithm, named as gait cell based individualized gait trajectory generation (GC-IGTG), for the purpose of offering a natural and personalized gait trajectory reference for the lower extremity exoskeleton based on the body parameters of the patients. The GC-IGTG is based on extreme learning machine and AutoEncoder, which makes it achieve fast training speed and suitable for small sample training conditions. The gait cell concept is proposed to improve the efficiency and safety of the algorithm. The experimental results indicate that the generated trajectories with GC-IGTG are almost identical to the original ones.
GC-IGTG:下肢外骨骼康复步态轨迹生成算法
为下肢残疾患者提供自然、个性化的康复步态轨迹,特别是在步行康复的早期阶段,具有重要的意义。下肢外骨骼已被证明可以高效地提供高重复性和精确的康复运动,但大多数现有外骨骼的步态轨迹不会随使用者而变化。本文提出了一种基于步态细胞的个性化步态轨迹生成算法(GC-IGTG),旨在根据患者的身体参数为下肢外骨骼提供自然、个性化的步态轨迹参考。GC-IGTG基于极限学习机和AutoEncoder,训练速度快,适合小样本训练条件。为了提高算法的效率和安全性,提出了步态细胞的概念。实验结果表明,GC-IGTG生成的轨迹与原始轨迹基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信