{"title":"Synthesis of CuO nanocomposites with various morphologies via pulsed wire explosion","authors":"S. Krishnan, A. Haseeb, M. Johan","doi":"10.1109/IEMT.2012.6521746","DOIUrl":null,"url":null,"abstract":"Cu oxides are widely used in various aspects of electronic applications such as superconductor, gas sensor, ferroelectricity and magnetism. In this paper we report a novel method for energy efficient and eco friendly synthesis of CuO nanocomposites with various physical structures and chemical nature. The nanocomposites were produced by pulsed wire explosion in deionized water at 1°C, 10°C, 15°C, 25°C, 35°C, 45°C, 55°C and 60°C. CuO nanocomposites with different morphology were obtained by simply varying the exploding medium temperature. Needle-like CuO nanocrystals were successfully synthesized in deionized water at 60°C. The spherical nanoparticles were highly dispersed with an average size of 20nm while the needle-like nanocrystals were average 70nm in width and 650nm in length. Optical and electronic properties of the needle-like nanostructure were analyzed. The nanocrystals showed p-type semiconductor characteristics. This will enable cost effective large scale synthesis of CuO nanocomposites for various nanoelectronic applications.","PeriodicalId":315408,"journal":{"name":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 35th IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.2012.6521746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Cu oxides are widely used in various aspects of electronic applications such as superconductor, gas sensor, ferroelectricity and magnetism. In this paper we report a novel method for energy efficient and eco friendly synthesis of CuO nanocomposites with various physical structures and chemical nature. The nanocomposites were produced by pulsed wire explosion in deionized water at 1°C, 10°C, 15°C, 25°C, 35°C, 45°C, 55°C and 60°C. CuO nanocomposites with different morphology were obtained by simply varying the exploding medium temperature. Needle-like CuO nanocrystals were successfully synthesized in deionized water at 60°C. The spherical nanoparticles were highly dispersed with an average size of 20nm while the needle-like nanocrystals were average 70nm in width and 650nm in length. Optical and electronic properties of the needle-like nanostructure were analyzed. The nanocrystals showed p-type semiconductor characteristics. This will enable cost effective large scale synthesis of CuO nanocomposites for various nanoelectronic applications.