Dependency of heat transfer rate on the Brinkman number in microchannels

H. Park
{"title":"Dependency of heat transfer rate on the Brinkman number in microchannels","authors":"H. Park","doi":"10.1109/THERMINIC.2007.4451748","DOIUrl":null,"url":null,"abstract":"Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. Our experimental results showed a good empirical equation that Nu/(Re0.62 Pr0.33) is inversely proportional to the Brinkman number in laminar flow regime. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.","PeriodicalId":264943,"journal":{"name":"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2007.4451748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device but is not clearly understood yet. This work proposes a new correlation between heat transfer rate and Brinkman number which is nondimensional number of viscosity, flow velocity and temperature. Our experimental results showed a good empirical equation that Nu/(Re0.62 Pr0.33) is inversely proportional to the Brinkman number in laminar flow regime. It is expected that the equation proposed by this work can be useful to design microchannel cooling device.
微通道中传热速率与布林克曼数的关系
随着高密度集成电路技术的出现,电子产品产生的热量也在增加。为了产生热量,微尺度冷却被认为是一种很有前途的技术。在微尺度冷却装置的设计中,传热速率的预测是一个至关重要的问题,但目前还没有得到很好的认识。本文提出了传热速率与布林克曼数(即粘度、流速和温度的无量纲数)之间的新关系。实验结果表明,在层流状态下,Nu/(Re0.62 Pr0.33)与Brinkman数成反比。期望本文所提出的方程对微通道冷却装置的设计有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信