Numerical Simulation of Roughness Effect on Gaseous Flow and Heat Transfer in Microchannels

Tiantian Zhang, L. Jia
{"title":"Numerical Simulation of Roughness Effect on Gaseous Flow and Heat Transfer in Microchannels","authors":"Tiantian Zhang, L. Jia","doi":"10.1109/NEMS.2007.352247","DOIUrl":null,"url":null,"abstract":"A three-dimensional compressible model of microchannel was established. Flow and heat transfer characteristics of nitrogen flows in microchannels (hydraulic diameter is 100 mum) with designed roughness in form of obstructions placed along channels walls have been investigated numerically through a finite element CFD code consideration of the effect of compressibility and viscosity heating. The model was verified through comparing with experiment data. Then the effects of the Reynolds number, obstruction height, obstruction pitch, obstruction geometry and width to height Ratio of obstruction on the flow and heat transfer characteristics were investigated.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.352247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A three-dimensional compressible model of microchannel was established. Flow and heat transfer characteristics of nitrogen flows in microchannels (hydraulic diameter is 100 mum) with designed roughness in form of obstructions placed along channels walls have been investigated numerically through a finite element CFD code consideration of the effect of compressibility and viscosity heating. The model was verified through comparing with experiment data. Then the effects of the Reynolds number, obstruction height, obstruction pitch, obstruction geometry and width to height Ratio of obstruction on the flow and heat transfer characteristics were investigated.
微通道内粗糙度对气体流动和传热影响的数值模拟
建立了微通道的三维可压缩模型。考虑可压缩性和黏性加热的影响,通过有限元CFD程序对设计粗糙度为沿通道壁面放置障碍物形式的微通道(水力直径为100 μ m)内氮气流动的流动和传热特性进行了数值研究。通过与实验数据的对比,验证了模型的正确性。然后研究了雷诺数、障碍物高度、障碍物间距、障碍物几何形状和障碍物宽高比对流动和换热特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信