Obstacle Avoidance Using Stereo Vision and Deep Reinforcement Learning in an Animal-like Robot

Fuhai Ling, Alejandro Jiménez-Rodríguez, T. Prescott
{"title":"Obstacle Avoidance Using Stereo Vision and Deep Reinforcement Learning in an Animal-like Robot","authors":"Fuhai Ling, Alejandro Jiménez-Rodríguez, T. Prescott","doi":"10.1109/ROBIO49542.2019.8961639","DOIUrl":null,"url":null,"abstract":"Obstacle avoidance is a fundamental behavior required to achieve safety and stability in both animals and robots. Many animals perceive and safely navigate their environment using two eyes with overlapping visual fields, allowing the use of stereopsis to compute distances to surfaces and to support collision avoidance. In this paper we develop an obstacle avoidance behavior for the biomimetic robot MiRo that combines stereo vision with deep reinforcement learning. We further show that avoidance strategies, learned for a simulated robot and environment, can be effectively transferred to a physical robot.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Obstacle avoidance is a fundamental behavior required to achieve safety and stability in both animals and robots. Many animals perceive and safely navigate their environment using two eyes with overlapping visual fields, allowing the use of stereopsis to compute distances to surfaces and to support collision avoidance. In this paper we develop an obstacle avoidance behavior for the biomimetic robot MiRo that combines stereo vision with deep reinforcement learning. We further show that avoidance strategies, learned for a simulated robot and environment, can be effectively transferred to a physical robot.
基于立体视觉和深度强化学习的类动物机器人避障研究
避障是动物和机器人实现安全和稳定的基本行为。许多动物用两只眼睛和重叠的视野来感知和安全导航它们的环境,允许使用立体视觉来计算到表面的距离,并支持碰撞避免。在本文中,我们开发了一种结合立体视觉和深度强化学习的仿生机器人MiRo的避障行为。我们进一步表明,为模拟机器人和环境学习的回避策略可以有效地转移到物理机器人上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信