Electromigration Model for Platinum Hotplates

L. Filipovic
{"title":"Electromigration Model for Platinum Hotplates","authors":"L. Filipovic","doi":"10.23919/SISPAD49475.2020.9241645","DOIUrl":null,"url":null,"abstract":"Microheaters are frequently applied in the design of semiconductor metal oxide gas sensors in order to heat the sensing layer and induce the surface chemical reactions which promote molecular adsorption. One of the most common materials used for the microheater layer is platinum. In this manuscript, a model for electro-migration is developed and implemented to study vacancy dynamics and the thereby-induced stress in platinum-based microheaters for gas sensor applications. The model is then applied to study the impact of the individual components which contribute to vacancy transport, including electro-migration, thermo-migration, and stress-migration. We find that these structures have very high thermal gradients, making the impact of thermo-migration component higher than the electro-migration component in the early stages of vacancy transport, unlike in copper-based interconnects. Therefore, improving the temperature uniformity of the microheater design should lead to a longer operating time before failure.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microheaters are frequently applied in the design of semiconductor metal oxide gas sensors in order to heat the sensing layer and induce the surface chemical reactions which promote molecular adsorption. One of the most common materials used for the microheater layer is platinum. In this manuscript, a model for electro-migration is developed and implemented to study vacancy dynamics and the thereby-induced stress in platinum-based microheaters for gas sensor applications. The model is then applied to study the impact of the individual components which contribute to vacancy transport, including electro-migration, thermo-migration, and stress-migration. We find that these structures have very high thermal gradients, making the impact of thermo-migration component higher than the electro-migration component in the early stages of vacancy transport, unlike in copper-based interconnects. Therefore, improving the temperature uniformity of the microheater design should lead to a longer operating time before failure.
铂热板的电迁移模型
微加热器被广泛应用于半导体金属氧化物气体传感器的设计中,其目的是加热传感层,诱发表面化学反应,促进分子吸附。用于微加热器层的最常用材料之一是铂。在本文中,开发并实施了一个电迁移模型,以研究空位动力学和由此引起的应力在铂基微加热器中的气体传感器应用。然后将该模型应用于研究导致空位迁移的各个组分的影响,包括电迁移、热迁移和应力迁移。我们发现这些结构具有非常高的热梯度,使得热迁移组分的影响在空位迁移的早期阶段高于电迁移组分,这与铜基互连不同。因此,提高微加热器设计的温度均匀性应能延长故障前的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信