Semantic segmentation of breast cancer histopathology images using deep learning

Yasmina Benmabrouk, M. Gasmi, H. Bendjenna, Abdelmouiz Nadjah
{"title":"Semantic segmentation of breast cancer histopathology images using deep learning","authors":"Yasmina Benmabrouk, M. Gasmi, H. Bendjenna, Abdelmouiz Nadjah","doi":"10.1109/PAIS56586.2022.9946874","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the most prevalent cancers. Before initiating treatment, the phase of breast histopathology images' segmentation is crucial for obtaining an accurate diagnosis. The effectiveness of segmentation is frequently dependent on enormous training datasets accompanied by high-quality human annotations. However, the annotation process is labor-intensive, costly, and consumes much time. This paper proposes a novel color-detection-based method for automatically annotating breast cancer histopathology images. We also build a semantic segmentation model for breast cancer histopathology images based on deep learning using the UNet architecture allowing the pathologist to make immediate and accurate diagnoses.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is one of the most prevalent cancers. Before initiating treatment, the phase of breast histopathology images' segmentation is crucial for obtaining an accurate diagnosis. The effectiveness of segmentation is frequently dependent on enormous training datasets accompanied by high-quality human annotations. However, the annotation process is labor-intensive, costly, and consumes much time. This paper proposes a novel color-detection-based method for automatically annotating breast cancer histopathology images. We also build a semantic segmentation model for breast cancer histopathology images based on deep learning using the UNet architecture allowing the pathologist to make immediate and accurate diagnoses.
基于深度学习的乳腺癌组织病理学图像语义分割
乳腺癌是最常见的癌症之一。在开始治疗之前,乳腺组织病理学图像的分割阶段对于获得准确的诊断至关重要。分割的有效性往往依赖于大量的训练数据集和高质量的人工注释。但是,注释过程是劳动密集型的,成本高,并且消耗大量时间。提出了一种基于颜色检测的乳腺癌组织病理图像自动标注方法。我们还使用UNet架构建立了基于深度学习的乳腺癌组织病理学图像语义分割模型,使病理学家能够做出即时和准确的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信