Towards knowledge-enhanced process models for semiconductor fabrication

Tom Rothe, Mudassir Ali Sayyed, Jan Langer, K. Gottfried, Jörg Schuster, Martin Stoll, H. Kuhn
{"title":"Towards knowledge-enhanced process models for semiconductor fabrication","authors":"Tom Rothe, Mudassir Ali Sayyed, Jan Langer, K. Gottfried, Jörg Schuster, Martin Stoll, H. Kuhn","doi":"10.1109/IITC/MAM57687.2023.10154872","DOIUrl":null,"url":null,"abstract":"We present a novel approach for modeling semiconductor processing that uses machine learning to combine expert knowledge, physics models, and actual process data into so-called knowledge-enhanced process models. Our method is illustrated on models for chemical-mechanical planarization, a key technology for semiconductor processing. It is an important step towards robust, accurate, and transferable, real-time models for digital twins of semiconductor processes and process chains.","PeriodicalId":241835,"journal":{"name":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC/MAM57687.2023.10154872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach for modeling semiconductor processing that uses machine learning to combine expert knowledge, physics models, and actual process data into so-called knowledge-enhanced process models. Our method is illustrated on models for chemical-mechanical planarization, a key technology for semiconductor processing. It is an important step towards robust, accurate, and transferable, real-time models for digital twins of semiconductor processes and process chains.
面向半导体制造的知识增强过程模型
我们提出了一种新的半导体加工建模方法,该方法使用机器学习将专家知识、物理模型和实际过程数据结合到所谓的知识增强过程模型中。我们的方法在化学-机械平面化模型上得到了说明,这是半导体加工的关键技术。对于半导体工艺和工艺链的数字孪生,这是朝着稳健、准确和可转移的实时模型迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信