Improving the efficiency of multipole-accelerated method-of-moments solvers using dual grid multipole expansions

J.-R. Li, J. White
{"title":"Improving the efficiency of multipole-accelerated method-of-moments solvers using dual grid multipole expansions","authors":"J.-R. Li, J. White","doi":"10.1109/EPEP.1997.634079","DOIUrl":null,"url":null,"abstract":"Method-of-Moments (MoM) based 3-D electromagnetic analysis programs typically generate dense systems of equations which are extremely expensive to solve. In the last several years, very fast MoM solvers have been developed by sparsifying the dense system using a hierarchy of multipole expansions or grid projection plus the fast Fourier transform. The hierarchical multipole algorithms represented clusters of source distributions with an expansion in the center of the cluster, where as grid projection algorithms represent clusters using grid-locked point sources. In this paper we consider how to improve the efficiency of either algorithm by using grid-locked multipole expansions to represent clusters of sources.","PeriodicalId":220951,"journal":{"name":"Electrical Performance of Electronic Packaging","volume":"19 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.1997.634079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Method-of-Moments (MoM) based 3-D electromagnetic analysis programs typically generate dense systems of equations which are extremely expensive to solve. In the last several years, very fast MoM solvers have been developed by sparsifying the dense system using a hierarchy of multipole expansions or grid projection plus the fast Fourier transform. The hierarchical multipole algorithms represented clusters of source distributions with an expansion in the center of the cluster, where as grid projection algorithms represent clusters using grid-locked point sources. In this paper we consider how to improve the efficiency of either algorithm by using grid-locked multipole expansions to represent clusters of sources.
利用双网格多极展开提高多极加速矩法求解的效率
基于矩量法(MoM)的三维电磁分析程序通常会生成密集的方程组,求解起来非常昂贵。在过去的几年中,通过使用多极展开或网格投影分层加上快速傅里叶变换对密集系统进行稀疏化,开发了非常快速的MoM求解器。分层多极算法表示源分布的簇,在簇的中心有一个扩展,而网格投影算法表示使用网格锁定点源的簇。在本文中,我们考虑了如何通过使用网格锁定的多极展开来表示源簇来提高这两种算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信