{"title":"Simulation and fabrication of test structure for micro-wall solar cell with electric-field effect","authors":"T. Kusakabe, N. Matsuo, A. Heya","doi":"10.1109/IMFEDK.2016.7521706","DOIUrl":null,"url":null,"abstract":"The energy loss of solar cell due to the recombination of holes and electrons which are excited by the incident solar beam is approximately 20% of all the loss-mechanisms. We simulated the solar cell with Metal-Insulator-Semiconductor (MIS) structure and fabricated the MIS solar cell using the Silicon-on-Insulator (SOI) substrate. Back gate bias restrains the recombination of holes and electrons, therefore, the carrier life time is extended and the conversion efficiency is improved by the electric field effect in the power generation layer. It was clarified that the conversion efficiency with a gate bias of 2.5V was increased 50 times larger than that without it.","PeriodicalId":293371,"journal":{"name":"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2016.7521706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The energy loss of solar cell due to the recombination of holes and electrons which are excited by the incident solar beam is approximately 20% of all the loss-mechanisms. We simulated the solar cell with Metal-Insulator-Semiconductor (MIS) structure and fabricated the MIS solar cell using the Silicon-on-Insulator (SOI) substrate. Back gate bias restrains the recombination of holes and electrons, therefore, the carrier life time is extended and the conversion efficiency is improved by the electric field effect in the power generation layer. It was clarified that the conversion efficiency with a gate bias of 2.5V was increased 50 times larger than that without it.