Virtual prototyping advanced by statistic and stochastic methodologies

S. Rzepka, A. Muller, B. Michel
{"title":"Virtual prototyping advanced by statistic and stochastic methodologies","authors":"S. Rzepka, A. Muller, B. Michel","doi":"10.1109/ESIME.2010.5464571","DOIUrl":null,"url":null,"abstract":"The paper reports three examples of best industrial practice showing the substantial benefits gained in terms of time-to-market reduction when virtual prototyping is enhanced by statistical and stochastic methodologies. These examples from a microelectronics setting of high volume component and module manufacturing deal with different fields: i) ball grid array (BGA) design optimization based on sophisticated design-of-experiments (DoE) and response surface (RS) schemes, ii) material modeling based on stochastic parameter identification and optimization, and iii) process pre-qualification by involving a stochastic robustness analysis.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper reports three examples of best industrial practice showing the substantial benefits gained in terms of time-to-market reduction when virtual prototyping is enhanced by statistical and stochastic methodologies. These examples from a microelectronics setting of high volume component and module manufacturing deal with different fields: i) ball grid array (BGA) design optimization based on sophisticated design-of-experiments (DoE) and response surface (RS) schemes, ii) material modeling based on stochastic parameter identification and optimization, and iii) process pre-qualification by involving a stochastic robustness analysis.
基于统计和随机方法的虚拟样机技术
本文报告了三个最佳工业实践的例子,展示了通过统计和随机方法增强虚拟原型时在缩短上市时间方面获得的实质性好处。这些例子来自于大量组件和模块制造的微电子设置,涉及不同的领域:i)基于复杂的实验设计(DoE)和响应面(RS)方案的球栅阵列(BGA)设计优化,ii)基于随机参数识别和优化的材料建模,以及iii)涉及随机鲁棒性分析的过程预审。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信