Analysis of RF-MEMS switches in failure mode: Towards a more robust design

T. Kuenzig, Tatek Muschol, J. Iannacci, G. Schrag, G. Wachutka
{"title":"Analysis of RF-MEMS switches in failure mode: Towards a more robust design","authors":"T. Kuenzig, Tatek Muschol, J. Iannacci, G. Schrag, G. Wachutka","doi":"10.1109/EUROSIME.2014.6813812","DOIUrl":null,"url":null,"abstract":"We present comprehensive theoretical and experimental investigations on one of the most relevant failure mechanisms in RF-MEMS switches, namely electrically induced stiction. In particular, we analyze an RF-MEMS switch equipped with an embedded active thermal recovery appliance by deriving and applying a 3D, problem-adapted, coupled finite element (FE) model including all relevant mechanical, electrical, thermal, and fluidic effects. The accuracy and predictive power of the simulations is ensured by a dedicated calibration procedure based on highly accurate characterization techniques such as white light interferometry and laser Doppler vibrometry. Applying the calibrated model, we studied the switch operation during failure and recovery in all details and identified the most important design parameters affecting its reliability with a view to improving the recovery capability as well as optimizing the overall performance towards a more robust switch design.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present comprehensive theoretical and experimental investigations on one of the most relevant failure mechanisms in RF-MEMS switches, namely electrically induced stiction. In particular, we analyze an RF-MEMS switch equipped with an embedded active thermal recovery appliance by deriving and applying a 3D, problem-adapted, coupled finite element (FE) model including all relevant mechanical, electrical, thermal, and fluidic effects. The accuracy and predictive power of the simulations is ensured by a dedicated calibration procedure based on highly accurate characterization techniques such as white light interferometry and laser Doppler vibrometry. Applying the calibrated model, we studied the switch operation during failure and recovery in all details and identified the most important design parameters affecting its reliability with a view to improving the recovery capability as well as optimizing the overall performance towards a more robust switch design.
RF-MEMS开关失效模式分析:迈向更稳健的设计
我们对RF-MEMS开关中最相关的失效机制之一即电致伸缩进行了全面的理论和实验研究。特别地,我们通过推导和应用三维、问题适应的耦合有限元(FE)模型,包括所有相关的机械、电气、热和流体效应,分析了配备嵌入式主动热回收装置的RF-MEMS开关。模拟的准确性和预测能力由基于高精度表征技术(如白光干涉测量和激光多普勒振动测量)的专用校准程序确保。应用校正后的模型,我们详细研究了开关在故障和恢复过程中的操作,并确定了影响其可靠性的最重要的设计参数,以期提高开关的恢复能力,优化开关的整体性能,从而实现更稳健的开关设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信