Electro-thermal analysis of device interactions in Si CMOS structure

T. Hatakeyama, K. Fushinobu, K. Okazaki
{"title":"Electro-thermal analysis of device interactions in Si CMOS structure","authors":"T. Hatakeyama, K. Fushinobu, K. Okazaki","doi":"10.1109/EMAP.2005.1598279","DOIUrl":null,"url":null,"abstract":"Numerical calculation of submicron silicon MOSFET and CMOS device is performed. Conjugate nature of the thermal and electrical behavior in the device is considered, and the lattice temperature is solved as well as the electron concentration and the electron temperature. Considering both the electron temperature and the lattice temperature is important for the device modeling, for example the electron distribution shows the difference with and without considering the electron temperature. In this research, by comparing the calculation result of n-type and p-type MOSFET and that of CMOS, we examine the interaction mechanism between n-type and p-type MOSFET in CMOS device when the distance between n-type and p-type MOSFET is decreased. From the calculated results, we investigate that the reason of the interaction between two MOSFET in CMOS is the forward bias at the p-n junction of substrate. Furthermore, we can estimate the distance, at the case of interaction, from the results of n-type and p-type MOSFET separately model, not from the results of CMOS model.","PeriodicalId":352550,"journal":{"name":"2005 International Symposium on Electronics Materials and Packaging","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Electronics Materials and Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMAP.2005.1598279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical calculation of submicron silicon MOSFET and CMOS device is performed. Conjugate nature of the thermal and electrical behavior in the device is considered, and the lattice temperature is solved as well as the electron concentration and the electron temperature. Considering both the electron temperature and the lattice temperature is important for the device modeling, for example the electron distribution shows the difference with and without considering the electron temperature. In this research, by comparing the calculation result of n-type and p-type MOSFET and that of CMOS, we examine the interaction mechanism between n-type and p-type MOSFET in CMOS device when the distance between n-type and p-type MOSFET is decreased. From the calculated results, we investigate that the reason of the interaction between two MOSFET in CMOS is the forward bias at the p-n junction of substrate. Furthermore, we can estimate the distance, at the case of interaction, from the results of n-type and p-type MOSFET separately model, not from the results of CMOS model.
Si CMOS结构中器件相互作用的电热分析
对亚微米硅MOSFET和CMOS器件进行了数值计算。考虑了器件中热学和电学行为的共轭性质,求解了晶格温度、电子浓度和电子温度。同时考虑电子温度和晶格温度对器件建模很重要,例如,电子分布显示了考虑电子温度和不考虑电子温度时的差异。本研究通过比较n型和p型MOSFET与CMOS的计算结果,考察了当n型和p型MOSFET之间的距离减小时,CMOS器件中n型和p型MOSFET之间的相互作用机制。从计算结果中,我们研究了CMOS中两个MOSFET相互作用的原因是衬底pn结的正向偏置。此外,在相互作用的情况下,我们可以从n型和p型MOSFET分别模型的结果中估计距离,而不是从CMOS模型的结果中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信