Solution-Processable Molecular Oxides for Integrated Memories

K. Monakhov, M. Moors, Eric Vogelsberg, Jonas Lorenz, J. Warneke, Fangshun Yang
{"title":"Solution-Processable Molecular Oxides for Integrated Memories","authors":"K. Monakhov, M. Moors, Eric Vogelsberg, Jonas Lorenz, J. Warneke, Fangshun Yang","doi":"10.1109/IITC/MAM57687.2023.10154863","DOIUrl":null,"url":null,"abstract":"The future of semiconductor electronics is driven by the ramp-up of low-power Complementary Metal Oxide Semiconductor (CMOS) memory devices that are scalable down to a few nanometers and ensure high storage capacity, high speed, and good data reliability. On sub-10 nm scales, however, the established computer memories increasingly face their technical and performance limits. This is largely due to the chemical and physical constraints that come with electronic solid-state oxide materials as active switching components. Our research group aims to address this challenge by creating electrically accessible multi-level memories based on solution-processable molecular metal oxides (so-called polyoxometalates, POMs), which can result in multi-bit heterostructures with a virtually unlimited number of logic states exerted by chemically programmable POMs.","PeriodicalId":241835,"journal":{"name":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Interconnect Technology Conference (IITC) and IEEE Materials for Advanced Metallization Conference (MAM)(IITC/MAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC/MAM57687.2023.10154863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The future of semiconductor electronics is driven by the ramp-up of low-power Complementary Metal Oxide Semiconductor (CMOS) memory devices that are scalable down to a few nanometers and ensure high storage capacity, high speed, and good data reliability. On sub-10 nm scales, however, the established computer memories increasingly face their technical and performance limits. This is largely due to the chemical and physical constraints that come with electronic solid-state oxide materials as active switching components. Our research group aims to address this challenge by creating electrically accessible multi-level memories based on solution-processable molecular metal oxides (so-called polyoxometalates, POMs), which can result in multi-bit heterostructures with a virtually unlimited number of logic states exerted by chemically programmable POMs.
用于集成存储器的溶液可处理分子氧化物
半导体电子的未来是由低功耗互补金属氧化物半导体(CMOS)存储器件的增加所驱动的,这些器件可扩展到几纳米,并确保高存储容量、高速度和良好的数据可靠性。然而,在10纳米以下的尺度上,现有的计算机存储器日益面临其技术和性能的限制。这主要是由于电子固态氧化物材料作为有源开关元件所带来的化学和物理限制。我们的研究小组旨在通过基于溶液可处理的分子金属氧化物(所谓的多金属氧酸盐,POMs)创建电可访问的多级存储器来解决这一挑战,这可以产生多比特异质结构,并且化学可编程POMs具有几乎无限数量的逻辑状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信