Study of the influence of RGB and Lab color spaces on the performance of multifocus image fusion techniques

Sarra Babahenini, F. Charif, A. Taleb-Ahmed
{"title":"Study of the influence of RGB and Lab color spaces on the performance of multifocus image fusion techniques","authors":"Sarra Babahenini, F. Charif, A. Taleb-Ahmed","doi":"10.1109/PAIS56586.2022.9946904","DOIUrl":null,"url":null,"abstract":"In order to create a single image, multifocus image fusion brings together the important details and focused areas of the input multifocus images. Diverse camera depths of the field are used to capture these multi-focus images. Spatial domain focusing measurement has been used to introduce various multifocus image fusion algorithms. In this paper, we focus on the implementation of three multifocus color image fusion techniques: salience detection based multifocus image fusion (SDMF), salience detection using the technique of contourlet transformation (CT) and multi-scale guided filter (MGF) based fusion technique, using various color space models to improve the fusion result. The main objective is to examine whether the effects of R.G.B and L.A.B spaces have an influence on their recognition rate. We evaluated the performance of these techniques based on SSIM metrics, $\\mathbf{Q}^{(\\mathbf{AB} / \\mathbf{F})}, \\mathbf{L}^{(\\mathbf{AB} / \\mathbf{F})} \\mathbf{N}^{(\\mathbf{AB} / \\mathbf{F})}$ and FMI. The experimental results on the test set show that the RGB space performs better than the LAB space.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to create a single image, multifocus image fusion brings together the important details and focused areas of the input multifocus images. Diverse camera depths of the field are used to capture these multi-focus images. Spatial domain focusing measurement has been used to introduce various multifocus image fusion algorithms. In this paper, we focus on the implementation of three multifocus color image fusion techniques: salience detection based multifocus image fusion (SDMF), salience detection using the technique of contourlet transformation (CT) and multi-scale guided filter (MGF) based fusion technique, using various color space models to improve the fusion result. The main objective is to examine whether the effects of R.G.B and L.A.B spaces have an influence on their recognition rate. We evaluated the performance of these techniques based on SSIM metrics, $\mathbf{Q}^{(\mathbf{AB} / \mathbf{F})}, \mathbf{L}^{(\mathbf{AB} / \mathbf{F})} \mathbf{N}^{(\mathbf{AB} / \mathbf{F})}$ and FMI. The experimental results on the test set show that the RGB space performs better than the LAB space.
RGB和Lab色彩空间对多聚焦图像融合技术性能影响的研究
多聚焦图像融合将输入的多聚焦图像的重要细节和聚焦区域融合在一起,从而生成单幅图像。不同的相机景深被用来捕捉这些多焦点图像。空域聚焦测量已被用于引入各种多聚焦图像融合算法。本文重点实现了三种多聚焦彩色图像融合技术:基于显著性检测的多聚焦图像融合(SDMF)、基于contourlet变换(CT)的显著性检测和基于多尺度引导滤波(MGF)的融合技术,利用不同的色彩空间模型来改善融合结果。本研究的主要目的是研究R.G.B和L.A.B空间对其识别率的影响。我们基于SSIM指标、$\mathbf{Q}^{(\mathbf{AB} / \mathbf{F})}、\mathbf{L}^{(\mathbf{AB} / \mathbf{F})} \mathbf{N}^{(\mathbf{AB} / \mathbf{F})}$和FMI评估了这些技术的性能。在测试集上的实验结果表明,RGB空间的性能优于LAB空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信