Z. Stanojević, G. Strof, Oskar Baumgartner, Gerhard Rzepa, M. Karner
{"title":"Performance and Leakage Analysis of Si and Ge NWFETs Using a Combined Subband BTE and WKB Approach","authors":"Z. Stanojević, G. Strof, Oskar Baumgartner, Gerhard Rzepa, M. Karner","doi":"10.23919/SISPAD49475.2020.9241614","DOIUrl":null,"url":null,"abstract":"We are the first to present a subband-BTE solver with a fully integrated source/drain-tunneling current calculation based on the WKB-approximation. The method is validated against ballistic NEGF calculations showing good agreement. An investigation of Si and Ge-based NWFETs is performed showing that intra-band source/drain-tunneling is not a concern for Si devices. For Ge-based PMOS devices however, tunneling leakage limits sensible $\\mathrm{L}_{\\mathrm{G}}-$scaling to around 20 nm.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We are the first to present a subband-BTE solver with a fully integrated source/drain-tunneling current calculation based on the WKB-approximation. The method is validated against ballistic NEGF calculations showing good agreement. An investigation of Si and Ge-based NWFETs is performed showing that intra-band source/drain-tunneling is not a concern for Si devices. For Ge-based PMOS devices however, tunneling leakage limits sensible $\mathrm{L}_{\mathrm{G}}-$scaling to around 20 nm.