High Defect-Density Yield Learning using Three-Dimensional Logic Test Chips

Z. Liu, R. D. Blanton
{"title":"High Defect-Density Yield Learning using Three-Dimensional Logic Test Chips","authors":"Z. Liu, R. D. Blanton","doi":"10.1109/ITC44778.2020.9325244","DOIUrl":null,"url":null,"abstract":"Test vehicles of various types that aim to identify yield detractors are essential for maturing a new semiconductor process before high volume production. Due to large number of unpredictable geometries created by place-and-route, test vehicles that focus on random logic are of the utmost importance. Prior work that utilizes a two-dimensional regular array of logic blocks has demonstrated significant superiority over conventional approaches. In this work, a third dimension is added to ensure efficient diagnosis of multiple defects that frequently occur within a high defect-density environment. Experiments demonstrate a significant improvement in perfect diagnoses over the two-dimensional LCV.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"499 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Test vehicles of various types that aim to identify yield detractors are essential for maturing a new semiconductor process before high volume production. Due to large number of unpredictable geometries created by place-and-route, test vehicles that focus on random logic are of the utmost importance. Prior work that utilizes a two-dimensional regular array of logic blocks has demonstrated significant superiority over conventional approaches. In this work, a third dimension is added to ensure efficient diagnosis of multiple defects that frequently occur within a high defect-density environment. Experiments demonstrate a significant improvement in perfect diagnoses over the two-dimensional LCV.
基于三维逻辑测试芯片的高缺陷密度良率学习
在大批量生产之前,各种类型的测试车辆旨在确定产量的影响因素,这对于成熟新的半导体工艺至关重要。由于位置和路线产生了大量不可预测的几何形状,因此专注于随机逻辑的测试车辆至关重要。先前利用二维规则逻辑块阵列的工作已经证明了比传统方法显著的优越性。在这项工作中,增加了第三个维度,以确保在高缺陷密度环境中经常发生的多个缺陷的有效诊断。实验表明,与二维LCV相比,该方法在完美诊断方面有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信