{"title":"Prediction of stiction in microswitch systems","authors":"Ling Wu, V. Rochus, L. Noels, J. Golinval","doi":"10.1109/ESIME.2010.5464599","DOIUrl":null,"url":null,"abstract":"Stiction is a major failure mode of MEMS as microscopic structures tend to adhere to each other when their surfaces enter into contact. Although increasing the restoring forces of switch devices could overcome the stiction effect, this is not practical, as in turn, it also increases the actuation voltage. Therefore stiction prediction is important to be considered when designing micro- and nano- devices. In this paper, the numerical prediction of stiction for capacitive MEMS switches is considered. Toward this end, a micro-adhesive-contact law is derived from previous work and combined with a finite-element model.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"451 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stiction is a major failure mode of MEMS as microscopic structures tend to adhere to each other when their surfaces enter into contact. Although increasing the restoring forces of switch devices could overcome the stiction effect, this is not practical, as in turn, it also increases the actuation voltage. Therefore stiction prediction is important to be considered when designing micro- and nano- devices. In this paper, the numerical prediction of stiction for capacitive MEMS switches is considered. Toward this end, a micro-adhesive-contact law is derived from previous work and combined with a finite-element model.