Yield modeling from SRAM failure analysis

H. Parks
{"title":"Yield modeling from SRAM failure analysis","authors":"H. Parks","doi":"10.1109/ICMTS.1990.67898","DOIUrl":null,"url":null,"abstract":"Yield models based on Poisson, bose-Einstein, and binomial statistics are compared for a 1.25 mu m CMOS process. A mixed binomial yield model is shown to most accurately describe experimental yield data for a 1.25- mu m CMOS process. The model consists of gross yield and random yield components based on gross and random defects determined on a per level basis from a static random access memory-test element group (SRAM-TEG) yield vehicle failure analysis. The random yield component consists of both binomial and negative binomial segments, hence the mixed terminology, depending on whether or not a given defect shows evidence of clustering. Simple negative binomial models become optimistic at larger chip sizes by ascribing too much importance to interlevel effects of defect clustering. Using defect size distributions measured on a per level basis, the model is shown to hold over chip variations in feature size, product type, and chip area.<<ETX>>","PeriodicalId":196449,"journal":{"name":"International Conference on Microelectronic Test Structures","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Microelectronic Test Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.1990.67898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Yield models based on Poisson, bose-Einstein, and binomial statistics are compared for a 1.25 mu m CMOS process. A mixed binomial yield model is shown to most accurately describe experimental yield data for a 1.25- mu m CMOS process. The model consists of gross yield and random yield components based on gross and random defects determined on a per level basis from a static random access memory-test element group (SRAM-TEG) yield vehicle failure analysis. The random yield component consists of both binomial and negative binomial segments, hence the mixed terminology, depending on whether or not a given defect shows evidence of clustering. Simple negative binomial models become optimistic at larger chip sizes by ascribing too much importance to interlevel effects of defect clustering. Using defect size distributions measured on a per level basis, the model is shown to hold over chip variations in feature size, product type, and chip area.<>
基于SRAM失效分析的良率建模
在1.25 μ m CMOS工艺中,比较了基于泊松、玻色-爱因斯坦和二项统计的产率模型。混合二项产率模型最准确地描述了1.25 μ m CMOS工艺的实验产率数据。该模型由基于静态随机存取存储器测试元件组(SRAM-TEG)良率失效分析中每层确定的总良率和随机良率组成。随机产量成分由二项和负二项部分组成,因此是混合术语,取决于给定缺陷是否显示聚类的证据。简单的负二项模型由于过于重视缺陷聚类的层间效应而在较大的芯片尺寸下变得过于乐观。使用在每个级别的基础上测量的缺陷尺寸分布,该模型显示出在特征尺寸、产品类型和芯片面积方面的芯片变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信