A. Chasin, J. Franco, R. Ritzenthaler, G. Hellings, M. Cho, Y. Sasaki, A. Subirats, P. Roussel, B. Kaczer, D. Linten, N. Horiguchi, G. Groeseneken, A. Thean
{"title":"Hot-carrier analysis on nMOS Si FinFETs with solid source doped junction","authors":"A. Chasin, J. Franco, R. Ritzenthaler, G. Hellings, M. Cho, Y. Sasaki, A. Subirats, P. Roussel, B. Kaczer, D. Linten, N. Horiguchi, G. Groeseneken, A. Thean","doi":"10.1109/IRPS.2016.7574535","DOIUrl":null,"url":null,"abstract":"We report extensive experimental results of the Channel Hot Carrier (CHC) and Positive Bias Temperature Instability (PBTI) reliability of nMOS Si bulk-FinFETs with extension doping by PEALD Phosphorus doped Silicate Glass (PSG). Device performance improvements with PSG doping are achieved without substantial device reliability degradation even for short channel FinFETs. PSG results in better conformality and less damage in the junctions and lower Gate Induced Drain Leakage (GIDL) current than standard Phosphorous Ion Implantation process (P I/I).","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We report extensive experimental results of the Channel Hot Carrier (CHC) and Positive Bias Temperature Instability (PBTI) reliability of nMOS Si bulk-FinFETs with extension doping by PEALD Phosphorus doped Silicate Glass (PSG). Device performance improvements with PSG doping are achieved without substantial device reliability degradation even for short channel FinFETs. PSG results in better conformality and less damage in the junctions and lower Gate Induced Drain Leakage (GIDL) current than standard Phosphorous Ion Implantation process (P I/I).