{"title":"Electrical reliabilities of porous silica low-k films","authors":"T. Kikkawa, Y. Kayaba, K. Kohmura, S. Chikaki","doi":"10.1109/IRPS.2011.5784465","DOIUrl":null,"url":null,"abstract":"Electrical reliability of self-assembled porous silica films was investigated. Vapor phase silylation by use of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) was developed to reduce silanol groups and enhance siloxane cross-linkage, resulting in achieving lower dielectric constant and higher elastic modulus. To promote siloxane cross-linkage, Cs ion was doped to its precursor solution. The self-assembled porous silica low-k film was integrated in Cu damascene interconnects with ultraviolet (UV) irradiation and TMCTS vapor treatment, resulting in the highest elastic modulus of 9 GPa with the dielectric constant of 2.1. Sidewall protection layer was formed in the trench for Cu interconnects to improve time-dependent dielectric breakdown (TDDB) lifetime of more than 10 years at the electric field of 2.3 MV/cm.","PeriodicalId":242672,"journal":{"name":"2011 International Reliability Physics Symposium","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2011.5784465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Electrical reliability of self-assembled porous silica films was investigated. Vapor phase silylation by use of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) was developed to reduce silanol groups and enhance siloxane cross-linkage, resulting in achieving lower dielectric constant and higher elastic modulus. To promote siloxane cross-linkage, Cs ion was doped to its precursor solution. The self-assembled porous silica low-k film was integrated in Cu damascene interconnects with ultraviolet (UV) irradiation and TMCTS vapor treatment, resulting in the highest elastic modulus of 9 GPa with the dielectric constant of 2.1. Sidewall protection layer was formed in the trench for Cu interconnects to improve time-dependent dielectric breakdown (TDDB) lifetime of more than 10 years at the electric field of 2.3 MV/cm.