{"title":"Memory reliability improvements based on maximized error-correcting codes","authors":"V. Gherman, S. Evain, Y. Bonhomme","doi":"10.1109/ETS.2012.6233018","DOIUrl":null,"url":null,"abstract":"Error-correcting codes (ECC) offer an efficient way to improve the reliability and yield of memory subsystems. ECC-based protection is usually provided on a memory word basis such that the number of data-bits in a codeword corresponds to the amount of information that can be transferred during a single memory access operation. Consequently, the codeword length is not the maximum allowed by a certain check-bit number since the number of data-bits is constrained by the width of the memory data interface. This work investigates the additional error correction opportunities offered by the absence of a perfect match between the numbers of data-bits and check-bits in some of the most used ECCs. A method is proposed for the selection of multiple-bit errors which can become correctable with a minimal impact on decoder latency. Reliability improvements are evaluated for memories in which all errors affecting the same number of bits in a codeword are equally probable. It is shown that the application of the proposed methods to standard double-bit ECCs can improve the mean-time-to-failure (MTTF) of memories with up to 100%.","PeriodicalId":429839,"journal":{"name":"2012 17th IEEE European Test Symposium (ETS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 17th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2012.6233018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Error-correcting codes (ECC) offer an efficient way to improve the reliability and yield of memory subsystems. ECC-based protection is usually provided on a memory word basis such that the number of data-bits in a codeword corresponds to the amount of information that can be transferred during a single memory access operation. Consequently, the codeword length is not the maximum allowed by a certain check-bit number since the number of data-bits is constrained by the width of the memory data interface. This work investigates the additional error correction opportunities offered by the absence of a perfect match between the numbers of data-bits and check-bits in some of the most used ECCs. A method is proposed for the selection of multiple-bit errors which can become correctable with a minimal impact on decoder latency. Reliability improvements are evaluated for memories in which all errors affecting the same number of bits in a codeword are equally probable. It is shown that the application of the proposed methods to standard double-bit ECCs can improve the mean-time-to-failure (MTTF) of memories with up to 100%.