Test Aspects of System Health State Monitoring

H. Wunderlich, Hanieh Jafarzadeh, Alexandra Kourfali, N. Lylina, Zahra Paria Najafi-Haghi
{"title":"Test Aspects of System Health State Monitoring","authors":"H. Wunderlich, Hanieh Jafarzadeh, Alexandra Kourfali, N. Lylina, Zahra Paria Najafi-Haghi","doi":"10.1109/LATS58125.2023.10154480","DOIUrl":null,"url":null,"abstract":"System health monitoring is an integral concept that involves observing, evaluating, and adapting the system behavior under varying operating conditions. The data can be collected from embedded instruments throughout the lifetime. Various techniques, including machine learning, have to be used to analyze the data and adapt the underlying system behavior. At the same time, the behavior of modern devices is affected by different types of variations. In order to develop an efficient and precise health monitoring scheme, the underlying analysis and adaptation techniques must be robust even in the presence of those variations. This contribution explores various strategies for overcoming this challenge across the system stack.","PeriodicalId":145157,"journal":{"name":"2023 IEEE 24th Latin American Test Symposium (LATS)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th Latin American Test Symposium (LATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATS58125.2023.10154480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

System health monitoring is an integral concept that involves observing, evaluating, and adapting the system behavior under varying operating conditions. The data can be collected from embedded instruments throughout the lifetime. Various techniques, including machine learning, have to be used to analyze the data and adapt the underlying system behavior. At the same time, the behavior of modern devices is affected by different types of variations. In order to develop an efficient and precise health monitoring scheme, the underlying analysis and adaptation techniques must be robust even in the presence of those variations. This contribution explores various strategies for overcoming this challenge across the system stack.
系统运行状况状态监视的测试方面
系统运行状况监视是一个整体概念,它涉及观察、评估和调整不同操作条件下的系统行为。数据可以在整个生命周期内从嵌入式仪器中收集。必须使用包括机器学习在内的各种技术来分析数据并调整底层系统行为。同时,现代装置的行为受到不同类型的变化的影响。为了制定有效和精确的健康监测方案,即使存在这些变化,基本的分析和适应技术也必须是强有力的。本文探讨了在整个系统堆栈中克服这一挑战的各种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信