Distributed Human 3D Pose Estimation and Action Recognition*

Guoliang Liu, Tiantian Liu, G. Tian, Ze Ji
{"title":"Distributed Human 3D Pose Estimation and Action Recognition*","authors":"Guoliang Liu, Tiantian Liu, G. Tian, Ze Ji","doi":"10.1109/ROBIO49542.2019.8961741","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a distributed solution for 3D human pose estimation using a RGBD camera network. The key feature of our method is a dynamic hybrid consensus filter (DHCF) is introduced to fuse the multiple view information of cameras. In contrast to the centralized fusion solution, the DHCF algorithm can be used in a distributed network, which requires no central information fusion center. Therefore, the DHCF based fusion algorithm can benefit from many advantages of distributed network. We also show that the proposed fusion algorithm can handle the occlusion problems effectively, and achieve higher action recognition rate compared to the ones using only single view information.","PeriodicalId":121822,"journal":{"name":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO49542.2019.8961741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a distributed solution for 3D human pose estimation using a RGBD camera network. The key feature of our method is a dynamic hybrid consensus filter (DHCF) is introduced to fuse the multiple view information of cameras. In contrast to the centralized fusion solution, the DHCF algorithm can be used in a distributed network, which requires no central information fusion center. Therefore, the DHCF based fusion algorithm can benefit from many advantages of distributed network. We also show that the proposed fusion algorithm can handle the occlusion problems effectively, and achieve higher action recognition rate compared to the ones using only single view information.
分布式人体三维姿态估计和动作识别*
在本文中,我们提出了一种使用RGBD相机网络进行三维人体姿态估计的分布式解决方案。该方法的关键特点是引入动态混合共识滤波器(DHCF)来融合摄像机的多视图信息。与集中式融合方案相比,DHCF算法可以应用于分布式网络,不需要中央信息融合中心。因此,基于DHCF的融合算法可以利用分布式网络的许多优点。结果表明,该融合算法可以有效地处理遮挡问题,并且与仅使用单一视图信息的融合算法相比,具有更高的动作识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信