An improved feature ranking method for diagnosis of systematic timing uncertainty

P. Bastani, N. Callegari, L.-C. Wang, M. Abadir
{"title":"An improved feature ranking method for diagnosis of systematic timing uncertainty","authors":"P. Bastani, N. Callegari, L.-C. Wang, M. Abadir","doi":"10.1109/VDAT.2008.4542422","DOIUrl":null,"url":null,"abstract":"For diagnosis of systematic modeling uncertainty, an earlier work proposes a path-based methodology that employs support vector classification analysis to rank so-called delay entities. This work explains that delay entities can be seen as path features that are used to encode the characteristics of a path. We present an improved path feature ranking algorithm based on support vector epsiv-insensitive regression. We also discuss how to check if a dataset is too noisy for the analysis. Experimental results are presented to explain the ranking methodology and demonstrate the effectiveness of the improved approach.","PeriodicalId":156790,"journal":{"name":"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT.2008.4542422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

For diagnosis of systematic modeling uncertainty, an earlier work proposes a path-based methodology that employs support vector classification analysis to rank so-called delay entities. This work explains that delay entities can be seen as path features that are used to encode the characteristics of a path. We present an improved path feature ranking algorithm based on support vector epsiv-insensitive regression. We also discuss how to check if a dataset is too noisy for the analysis. Experimental results are presented to explain the ranking methodology and demonstrate the effectiveness of the improved approach.
一种用于系统时序不确定性诊断的改进特征排序方法
对于系统建模不确定性的诊断,早期的工作提出了一种基于路径的方法,该方法采用支持向量分类分析对所谓的延迟实体进行排序。这项工作解释了延迟实体可以被视为用于编码路径特征的路径特征。提出了一种改进的基于支持向量不敏感回归的路径特征排序算法。我们还讨论了如何检查数据集是否过于嘈杂而无法进行分析。实验结果解释了排序方法,并证明了改进方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信