{"title":"Reliability of dual damascene Cu metallization","authors":"M. Tsai, W. Tsai, S. Shue, C. Yu, M. Liang","doi":"10.1109/IITC.2000.854329","DOIUrl":null,"url":null,"abstract":"The electromigration (EM) and bias temperature stress (BTS) performances of Cu metallization in dual damascene structure were examined. The experimental results show that Cu has more than one order of magnitude EM lifetime relative to Al alloy. The activation energy of electromigration of Cu trench is 0.9 eV. The failure sites of Cu dual damascene process after EM stress testing are mainly in the bottom of cathode site's vias. Via electromigration can be improved up to one order magnitude by optimizing several processes such as PR stripping, pad structure, etc. BTS study results indicate that the activation energy of Cu ion drift leakage is around 1.1 to 1.4 eV. The interface of capping SiN and SiO/sub 2/ was found to be the major copper diffusion path. Lifetime extrapolated from the empirical data indicates that the device can sustain longer than 1000 years under normal operation condition.","PeriodicalId":287825,"journal":{"name":"Proceedings of the IEEE 2000 International Interconnect Technology Conference (Cat. No.00EX407)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 International Interconnect Technology Conference (Cat. No.00EX407)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2000.854329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The electromigration (EM) and bias temperature stress (BTS) performances of Cu metallization in dual damascene structure were examined. The experimental results show that Cu has more than one order of magnitude EM lifetime relative to Al alloy. The activation energy of electromigration of Cu trench is 0.9 eV. The failure sites of Cu dual damascene process after EM stress testing are mainly in the bottom of cathode site's vias. Via electromigration can be improved up to one order magnitude by optimizing several processes such as PR stripping, pad structure, etc. BTS study results indicate that the activation energy of Cu ion drift leakage is around 1.1 to 1.4 eV. The interface of capping SiN and SiO/sub 2/ was found to be the major copper diffusion path. Lifetime extrapolated from the empirical data indicates that the device can sustain longer than 1000 years under normal operation condition.