Vision data registration for robot self-localization in 3D

Pifu Zhang, E. Milios, J. Gu
{"title":"Vision data registration for robot self-localization in 3D","authors":"Pifu Zhang, E. Milios, J. Gu","doi":"10.1109/IROS.2005.1545433","DOIUrl":null,"url":null,"abstract":"We address the problem of globally consistent estimation of the trajectory of a robot arm moving in three dimensional space based on a sequence of binocular stereo images from a stereo camera mounted on the tip of the arm. Correspondence between 3D points from successive stereo camera positions is established through matching of 2D SIFT features in the images. We compare three different methods for solving this estimation problem, based on three distance measures between 3D points, Euclidean distance, Mahalanobis distance and a distance measure defined by a maximum likelihood formulation. Theoretical analysis and experimental results demonstrate that the maximum likelihood formulation is the most accurate. If the measurement error is guaranteed to be small, then Euclidean distance is the fastest, without significantly compromising accuracy, and therefore it is best for on-line robot navigation.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We address the problem of globally consistent estimation of the trajectory of a robot arm moving in three dimensional space based on a sequence of binocular stereo images from a stereo camera mounted on the tip of the arm. Correspondence between 3D points from successive stereo camera positions is established through matching of 2D SIFT features in the images. We compare three different methods for solving this estimation problem, based on three distance measures between 3D points, Euclidean distance, Mahalanobis distance and a distance measure defined by a maximum likelihood formulation. Theoretical analysis and experimental results demonstrate that the maximum likelihood formulation is the most accurate. If the measurement error is guaranteed to be small, then Euclidean distance is the fastest, without significantly compromising accuracy, and therefore it is best for on-line robot navigation.
面向机器人三维自定位的视觉数据配准
基于安装在机械臂尖端的立体摄像机拍摄的一系列双目立体图像,我们解决了机械臂在三维空间中运动轨迹的全局一致估计问题。通过匹配图像中的二维SIFT特征,建立连续立体摄像机位置的三维点之间的对应关系。我们比较了三种不同的方法来解决这个估计问题,基于三维点之间的三种距离度量,欧几里得距离,马氏距离和由最大似然公式定义的距离度量。理论分析和实验结果表明,最大似然公式是最准确的。在保证测量误差小的情况下,欧氏距离是最快的,而且精度不会受到很大影响,因此最适合机器人在线导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信