A multivariate parameter analysis of copper pillars eases the design of denser interconnects

G. Schlottig, T. Brunschwiler, J. Goicochea, W. Escher, B. Michel
{"title":"A multivariate parameter analysis of copper pillars eases the design of denser interconnects","authors":"G. Schlottig, T. Brunschwiler, J. Goicochea, W. Escher, B. Michel","doi":"10.1109/ESIME.2012.6191778","DOIUrl":null,"url":null,"abstract":"Electronic packaging increasingly aims at copper pillars as an interconnect concept, because of their benefits for fine pitches, high aspect ratios, high electromigration stability and excellent thermal conductivity. The thermal expansion and high stiffness of the pillars remains a design challenge when building-up more copper volume close to the silicon die. Specific pillar geometries and structured underfills have been suggested but included only few parameter variations. To gain profound insight into the thermo-mechanical aspects of copper pillars we present a parametric finite element approach and an according multivariate analysis of the design space. We chose a 3D slice model to represent a copper pillar matrix and varied height, width and thickness at a constant pitch to consider different aspect ratios and cross sections, and vary the material's CTE and Young's modulus. The general assumption of aiming higher columns without underfill as the most compliant design when controlling for BEoL layer thickness must be rejected. If exploiting the multivariate design space wholly, processing steps may be eliminated, such as structuring an underfill layer. Tailoring the CTE may be used to lower the stress level for a desired aspect ratio, and the ratio of Cu volume to total pillar layer volume should be considered. To accommodate the display of multivariate stress results we propose an appropriate small multiple visualization.","PeriodicalId":319207,"journal":{"name":"2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"93 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2012.6191778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electronic packaging increasingly aims at copper pillars as an interconnect concept, because of their benefits for fine pitches, high aspect ratios, high electromigration stability and excellent thermal conductivity. The thermal expansion and high stiffness of the pillars remains a design challenge when building-up more copper volume close to the silicon die. Specific pillar geometries and structured underfills have been suggested but included only few parameter variations. To gain profound insight into the thermo-mechanical aspects of copper pillars we present a parametric finite element approach and an according multivariate analysis of the design space. We chose a 3D slice model to represent a copper pillar matrix and varied height, width and thickness at a constant pitch to consider different aspect ratios and cross sections, and vary the material's CTE and Young's modulus. The general assumption of aiming higher columns without underfill as the most compliant design when controlling for BEoL layer thickness must be rejected. If exploiting the multivariate design space wholly, processing steps may be eliminated, such as structuring an underfill layer. Tailoring the CTE may be used to lower the stress level for a desired aspect ratio, and the ratio of Cu volume to total pillar layer volume should be considered. To accommodate the display of multivariate stress results we propose an appropriate small multiple visualization.
铜柱的多变量参数分析简化了密集互连的设计
由于铜柱具有细间距、高纵横比、高电迁移稳定性和优异的导热性等优点,电子封装越来越多地将铜柱作为互连概念。当在靠近硅模的地方建立更多的铜体积时,热膨胀和柱的高刚度仍然是一个设计挑战。提出了具体的矿柱几何形状和结构的下填土,但只包括很少的参数变化。为了深入了解铜柱的热力学方面,我们提出了参数化有限元方法和设计空间的多元分析。我们选择了一个三维切片模型来代表一个铜柱矩阵,并以恒定的间距变化高度、宽度和厚度,以考虑不同的长宽比和横截面,并改变材料的CTE和杨氏模量。在控制BEoL层厚度时,必须摒弃一般假设,即在没有底填的情况下,将较高的柱作为最符合要求的设计。如果完全利用多元设计空间,则可以消除处理步骤,例如构造下填充层。裁剪CTE可用于降低应力水平,以达到所需的长径比,并应考虑铜体积与总柱层体积的比例。为了适应多元应力结果的显示,我们提出了一个适当的小多元可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信