Made Putra Semadhi, Dewi Mulyaty, Eli Halimah, Jutti Levita
{"title":"Healthy mitochondrial DNA in balanced mitochondrial dynamics: A potential marker for neuro‑aging prediction (Review).","authors":"Made Putra Semadhi, Dewi Mulyaty, Eli Halimah, Jutti Levita","doi":"10.3892/br.2023.1646","DOIUrl":null,"url":null,"abstract":"<p><p>The mitochondrial genome or mitochondrial DNA (mtDNA) is released as a response to cellular stress. In mitochondrial biogenesis, active communication between the mitochondria genome and nucleus is associated with the mtDNA profile that affects the mitochondrial quality. The present review aimed to assess the molecular mechanism and potential roles of mitochondria in neuro-aging, including the importance of evaluating the health status of mtDNA via mitochondrial dynamics. The normal condition of mitochondria, defined as mitochondrial dynamics, includes persistent changes in morphology due to fission and fusion events and autophagy-mitophagy in the mitochondrial quality control process. The calculated copy number of mtDNA in the mitochondria genome represents cellular health, which can be affected by a long-term imbalance between the production and accumulation of reactive oxygen species in the neuroendocrine system, which leads to an abnormal function of mitochondria and mtDNA damage. Mitochondria health is a new approach to discovering a potential indicator for the health status of the nervous system and several types of neurodegenerative disorders. Mitochondrial dynamics is a key contributor to predicting neuro-aging development, which affects the self-renewal and differentiation of neurons in cell metabolism. Neuro-aging is associated with uncontrolled mitochondrial dynamics, which generates age-associated diseases via various mechanisms and signaling routes that lead to the mtDNA damage that has been associated with neurodegeneration. Future studies on the strategic positioning of mtDNA health profile are needed to detect early neurodegenerative disorders.</p>","PeriodicalId":8863,"journal":{"name":"Biomedical reports","volume":"19 3","pages":"64"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/07/br-19-03-01646.PMC10442761.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3892/br.2023.1646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mitochondrial genome or mitochondrial DNA (mtDNA) is released as a response to cellular stress. In mitochondrial biogenesis, active communication between the mitochondria genome and nucleus is associated with the mtDNA profile that affects the mitochondrial quality. The present review aimed to assess the molecular mechanism and potential roles of mitochondria in neuro-aging, including the importance of evaluating the health status of mtDNA via mitochondrial dynamics. The normal condition of mitochondria, defined as mitochondrial dynamics, includes persistent changes in morphology due to fission and fusion events and autophagy-mitophagy in the mitochondrial quality control process. The calculated copy number of mtDNA in the mitochondria genome represents cellular health, which can be affected by a long-term imbalance between the production and accumulation of reactive oxygen species in the neuroendocrine system, which leads to an abnormal function of mitochondria and mtDNA damage. Mitochondria health is a new approach to discovering a potential indicator for the health status of the nervous system and several types of neurodegenerative disorders. Mitochondrial dynamics is a key contributor to predicting neuro-aging development, which affects the self-renewal and differentiation of neurons in cell metabolism. Neuro-aging is associated with uncontrolled mitochondrial dynamics, which generates age-associated diseases via various mechanisms and signaling routes that lead to the mtDNA damage that has been associated with neurodegeneration. Future studies on the strategic positioning of mtDNA health profile are needed to detect early neurodegenerative disorders.
期刊介绍:
Biomedical Reports is a monthly, peer-reviewed journal, dedicated to publishing research across all fields of biology and medicine, including pharmacology, pathology, gene therapy, genetics, microbiology, neurosciences, infectious diseases, molecular cardiology and molecular surgery. The journal provides a home for original research, case reports and review articles.