{"title":"Anti-Martingale Proximal Policy Optimization","authors":"Yang Gu;Yuhu Cheng;Kun Yu;Xuesong Wang","doi":"10.1109/TCYB.2022.3170355","DOIUrl":null,"url":null,"abstract":"Since the sample data after one exploration process can only be used to update network parameters once in on-policy deep reinforcement learning (DRL), a high sample efficiency is necessary to accelerate the training process of on-policy DRL. In the proposed method, a submartingale criterion is proposed on the basis of the equivalence relationship between the optimal policy and martingale, and then an advanced value iteration (AVI) method is proposed to conduct value iteration with a high accuracy. Based on this foundation, an anti-martingale (AM) reinforcement learning framework is established to efficiently select the sample data that is conducive to policy optimization. In succession, an AM proximal policy optimization (AMPPO) method, which combines the AM framework with proximal policy optimization (PPO), is proposed to reasonably accelerate the updating process of state value that satisfies the submartingale criterion. Experimental results on the Mujoco platform show that AMPPO can achieve better performance than several state-of-the-art comparative DRL methods.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"53 10","pages":"6421-6432"},"PeriodicalIF":9.4000,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9774969/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Since the sample data after one exploration process can only be used to update network parameters once in on-policy deep reinforcement learning (DRL), a high sample efficiency is necessary to accelerate the training process of on-policy DRL. In the proposed method, a submartingale criterion is proposed on the basis of the equivalence relationship between the optimal policy and martingale, and then an advanced value iteration (AVI) method is proposed to conduct value iteration with a high accuracy. Based on this foundation, an anti-martingale (AM) reinforcement learning framework is established to efficiently select the sample data that is conducive to policy optimization. In succession, an AM proximal policy optimization (AMPPO) method, which combines the AM framework with proximal policy optimization (PPO), is proposed to reasonably accelerate the updating process of state value that satisfies the submartingale criterion. Experimental results on the Mujoco platform show that AMPPO can achieve better performance than several state-of-the-art comparative DRL methods.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.