In-situ shearing process observation system for soft materials via transmission electron microscopy.

Tomohiro Miyata, Hsiao-Fang Wang, Daisuke Watanabe, Yoshiaki Kawagoe, Tomonaga Okabe, Hiroshi Jinnai
{"title":"In-situ shearing process observation system for soft materials via transmission electron microscopy.","authors":"Tomohiro Miyata, Hsiao-Fang Wang, Daisuke Watanabe, Yoshiaki Kawagoe, Tomonaga Okabe, Hiroshi Jinnai","doi":"10.1093/jmicro/dfad045","DOIUrl":null,"url":null,"abstract":"<p><p>We developed an in-situ shear test system suitable for transmission electron microscopy (TEM) observations, which enabled us to examine the shear deformation behaviours inside soft materials at nanoscale resolutions. This study was conducted on a nanoparticle-filled rubber to investigate its nanoscale deformation behaviour under a large shear strain. First, the shear deformation process of a large area in the specimen was accurately examined and proven to exhibit an almost perfect simple shear. At the nanoscale, voids grew along the maximum principal strain during shear deformation. In addition, the nanoscale regions with rubber and silica aggregates exhibited deformation behaviours similar to the global shear deformation of the specimen. Although the silica aggregates exhibited displacement along the shearing directions, rotational motions were also observed owing to the torque generated by the local shear stress. This in-situ shear deformation system for TEM enabled us to understand the nanoscale origins of the mechanical properties of soft materials, particularly polymer composites. Graphical Abstract.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"208-214"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed an in-situ shear test system suitable for transmission electron microscopy (TEM) observations, which enabled us to examine the shear deformation behaviours inside soft materials at nanoscale resolutions. This study was conducted on a nanoparticle-filled rubber to investigate its nanoscale deformation behaviour under a large shear strain. First, the shear deformation process of a large area in the specimen was accurately examined and proven to exhibit an almost perfect simple shear. At the nanoscale, voids grew along the maximum principal strain during shear deformation. In addition, the nanoscale regions with rubber and silica aggregates exhibited deformation behaviours similar to the global shear deformation of the specimen. Although the silica aggregates exhibited displacement along the shearing directions, rotational motions were also observed owing to the torque generated by the local shear stress. This in-situ shear deformation system for TEM enabled us to understand the nanoscale origins of the mechanical properties of soft materials, particularly polymer composites. Graphical Abstract.

通过透射电子显微镜观察软材料原位剪切过程的系统。
我们开发了一种适合透射电子显微镜(TEM)观察的原位剪切测试系统,使我们能够以纳米级分辨率研究软材料内部的剪切变形行为。本研究以纳米粒子填充橡胶为对象,研究其在大剪切应变下的纳米级变形行为。首先,对试样中大面积的剪切变形过程进行了精确检测,证明其表现出几乎完美的简单剪切。在纳米尺度上,剪切变形过程中的空隙沿着最大主应变生长。此外,带有橡胶和二氧化硅聚集体的纳米级区域表现出与试样整体剪切变形类似的变形行为。虽然二氧化硅聚集体沿剪切方向表现出位移,但由于局部剪切应力产生的扭矩,也观察到了旋转运动。这种用于 TEM 的原位剪切变形系统使我们能够了解软材料(尤其是聚合物复合材料)机械性能的纳米尺度起源。图表摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信