Barbara A Mellers, John P McCoy, Louise Lu, Philip E Tetlock
{"title":"Human and Algorithmic Predictions in Geopolitical Forecasting: Quantifying Uncertainty in Hard-to-Quantify Domains.","authors":"Barbara A Mellers, John P McCoy, Louise Lu, Philip E Tetlock","doi":"10.1177/17456916231185339","DOIUrl":null,"url":null,"abstract":"<p><p>Research on clinical versus statistical prediction has demonstrated that algorithms make more accurate predictions than humans in many domains. Geopolitical forecasting is an algorithm-unfriendly domain, with hard-to-quantify data and elusive reference classes that make predictive model-building difficult. Furthermore, the stakes can be high, with missed forecasts leading to mass-casualty consequences. For these reasons, geopolitical forecasting is typically done by humans, even though algorithms play important roles. They are essential as aggregators of crowd wisdom, as frameworks to partition human forecasting variance, and as inputs to hybrid forecasting models. Algorithms are extremely important in this domain. We doubt that humans will relinquish control to algorithms anytime soon-nor do we think they should. However, the accuracy of forecasts will greatly improve if humans are aided by algorithms.</p>","PeriodicalId":19757,"journal":{"name":"Perspectives on Psychological Science","volume":" ","pages":"711-721"},"PeriodicalIF":10.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives on Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/17456916231185339","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Research on clinical versus statistical prediction has demonstrated that algorithms make more accurate predictions than humans in many domains. Geopolitical forecasting is an algorithm-unfriendly domain, with hard-to-quantify data and elusive reference classes that make predictive model-building difficult. Furthermore, the stakes can be high, with missed forecasts leading to mass-casualty consequences. For these reasons, geopolitical forecasting is typically done by humans, even though algorithms play important roles. They are essential as aggregators of crowd wisdom, as frameworks to partition human forecasting variance, and as inputs to hybrid forecasting models. Algorithms are extremely important in this domain. We doubt that humans will relinquish control to algorithms anytime soon-nor do we think they should. However, the accuracy of forecasts will greatly improve if humans are aided by algorithms.
期刊介绍:
Perspectives on Psychological Science is a journal that publishes a diverse range of articles and reports in the field of psychology. The journal includes broad integrative reviews, overviews of research programs, meta-analyses, theoretical statements, book reviews, and articles on various topics such as the philosophy of science and opinion pieces about major issues in the field. It also features autobiographical reflections of senior members of the field, occasional humorous essays and sketches, and even has a section for invited and submitted articles.
The impact of the journal can be seen through the reverberation of a 2009 article on correlative analyses commonly used in neuroimaging studies, which still influences the field. Additionally, a recent special issue of Perspectives, featuring prominent researchers discussing the "Next Big Questions in Psychology," is shaping the future trajectory of the discipline.
Perspectives on Psychological Science provides metrics that showcase the performance of the journal. However, the Association for Psychological Science, of which the journal is a signatory of DORA, recommends against using journal-based metrics for assessing individual scientist contributions, such as for hiring, promotion, or funding decisions. Therefore, the metrics provided by Perspectives on Psychological Science should only be used by those interested in evaluating the journal itself.