Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ioannis Stylianakis, Nikolaos Zervos, Jenn-Huei Lii, Dimitrios A. Pantazis, Antonios Kolocouris
{"title":"Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory","authors":"Ioannis Stylianakis,&nbsp;Nikolaos Zervos,&nbsp;Jenn-Huei Lii,&nbsp;Dimitrios A. Pantazis,&nbsp;Antonios Kolocouris","doi":"10.1007/s10822-023-00513-5","DOIUrl":null,"url":null,"abstract":"<div><p>We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger’s force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree–Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol<sup>−1</sup>), followed by B3LYP (0.69 kcal mol<sup>−1</sup>) and the HF theories (0.81–1.0 kcal mol<sup>−1</sup>). As regards the force fields, the lowest errors were observed for the Allinger’s force fields MM3-00 (1.28 kcal mol<sup>−1</sup>), ΜΜ3-96 (1.40 kcal mol<sup>−1</sup>) and the Halgren’s MMFF94 force field (1.30 kcal mol<sup>−1</sup>) and then for the MM2-91 clones MMX (1.77 kcal mol<sup>−1</sup>) and MM+ (2.01 kcal mol<sup>−1</sup>) and MM4 (2.05 kcal mol<sup>−1</sup>). The DREIDING (3.63 kcal mol<sup>−1</sup>) and UFF (3.77 kcal mol<sup>−1</sup>) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-023-00513-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger’s force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree–Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol−1), followed by B3LYP (0.69 kcal mol−1) and the HF theories (0.81–1.0 kcal mol−1). As regards the force fields, the lowest errors were observed for the Allinger’s force fields MM3-00 (1.28 kcal mol−1), ΜΜ3-96 (1.40 kcal mol−1) and the Halgren’s MMFF94 force field (1.30 kcal mol−1) and then for the MM2-91 clones MMX (1.77 kcal mol−1) and MM+ (2.01 kcal mol−1) and MM4 (2.05 kcal mol−1). The DREIDING (3.63 kcal mol−1) and UFF (3.77 kcal mol−1) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.

Graphical abstract

Abstract Image

Abstract Image

Abstract Image

参考有机分子的构象能:根据耦合簇理论对常用有效计算方法进行基准测试。
我们选择了145个参考有机分子,其中包括用于计算机辅助药物设计的模型片段。我们使用力场计算了158个构象能和势垒,在商业和自由软件中具有广泛的适用性,并在有机分子构象能的计算中有广泛的应用,例如UFF和DREIDING力场,Allinger力场MM3-96、MM3-00、MM4-8,MM2-91克隆MMX和MM+,MMFF94力场,MM4,具有不同基集的从头算Hartree-Fock(HF)理论、标准密度泛函理论B3LYP、二阶后HF MP2理论和基于域的局域对自然轨道耦合簇DLPNO-CSD(T)理论,后者用于精确的参考值。有机分子的数据集包括碳氢化合物、卤代烷烃、共轭化合物以及含氧、氮、磷和硫的化合物。我们详细回顾了这些模型有机分子的构象方面,提供了对决定低能构象异构体稳定性的空间和电子因素的当前理解,以及包括先前实验观察和计算结果在内的文献。虽然计算机硬件的进步允许计算数千种构象,以供以后在药物设计项目中使用,但这项研究是对以前的经典研究的更新,这些研究使用了各种方法和不同环境的实验研究作为参考值。与DLPNO-CSD(T)参考的平均误差最低的是MP2(0.35 kcal mol-1),其次是B3LYP(0.69 kcal mol-2)和HF理论(0.81-1.0 kcal mol-3)。关于力场,阿林格力场MM3-00(1.28 kcal mol-)的误差最低,μΜ3-96(1.40 kcal mol-1)和Halgren的MMFF94力场(1.30 kcal mol-2),然后对于MM2-91克隆MMX(1.77 kcal mol-3)和MM+ DREIDING(3.63 kcal mol-1)和UFF(3.77 kcal mol-)力场的性能最低。我们使用的这些模型有机分子通常以类药物分子的片段形式存在。使用DLPNO-CSD(T)计算的值构成了一个有价值的数据集,用于进一步比较和改进力场参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信