昆明理工大学胡劲/熊仕昭:先验知识驱动的机器学习模拟理解固态电解质的电-化学-力学失效

研之成理 2025-08-11 10:44
文章摘要
本文介绍了昆明理工大学胡劲和熊仕昭团队开发的一种先验知识驱动的机器学习框架,用于研究固态电解质(SSE)中的电化学-力学失效问题。研究背景是固态锂金属电池(SSLMB)在负极-电解质界面处易发生枝晶形成和短路风险,而传统有限元方法计算量大且耗时。研究目的是通过机器学习模型预测固态电解质的应力分布,并提升模型的物理一致性。研究团队采用SE-UNet模型,结合先验知识和量化分析,显著提高了预测精度。结论表明,该方法为理解SSLMB界面失效提供了新视角,并为固态电池系统的固-固界面设计提供了创新策略。
昆明理工大学胡劲/熊仕昭:先验知识驱动的机器学习模拟理解固态电解质的电-化学-力学失效
本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者速来电或来函联系。
研之成理
最新文章
热门类别
相关文章
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信