{"title":"rTMS在精神健康障碍中的应用","authors":"Kneginja Richter, Stefanie Kellner, Christiane Licht","doi":"10.3389/fnetp.2023.943223","DOIUrl":null,"url":null,"abstract":"Transcranial magnetic stimulation (TMS) is an innovative and non-invasive technique used in the diagnosis and treatment of psychiatric and neurological disorders. Repetitive TMS (rTMS) can modulate neuronal activity, neuroplasticity and arousal of the waking and sleeping brain, and, more generally, overall mental health. Numerous studies have examined the predictors of the efficacy of rTMS on clinical outcome variables in various psychiatric disorders. These predictors often encompass the stimulated brain region’s location, electroencephalogram (EEG) activity patterns, potential morphological and neurophysiological anomalies, and individual patient’s response to treatment. Most commonly, rTMS is used in awake patients with depression, catatonia, and tinnitus. Interestingly, rTMS has also shown promise in inducing slow-wave oscillations in insomnia patients, opening avenues for future research into the potential beneficial effects of these oscillations on reports of non-restorative sleep. Furthermore, neurophysiological measures emerge as potential, disease-specific biomarkers, aiding in predicting treatment response and monitoring post-treatment changes. The study posits the convergence of neurophysiological biomarkers and individually tailored rTMS treatments as a gateway to a new era in psychiatric care. The potential of rTMS to induce slow-wave activity also surfaces as a significant contribution to personalized treatment approaches. Further investigations are called for to validate the imaging and electrophysiological biomarkers associated with rTMS. In conclusion, the potential for rTMS to significantly redefine treatment strategies through personalized approaches could enhance the outcomes in neuropsychiatric disorders.","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417823/pdf/","citationCount":"0","resultStr":"{\"title\":\"rTMS in mental health disorders.\",\"authors\":\"Kneginja Richter, Stefanie Kellner, Christiane Licht\",\"doi\":\"10.3389/fnetp.2023.943223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcranial magnetic stimulation (TMS) is an innovative and non-invasive technique used in the diagnosis and treatment of psychiatric and neurological disorders. Repetitive TMS (rTMS) can modulate neuronal activity, neuroplasticity and arousal of the waking and sleeping brain, and, more generally, overall mental health. Numerous studies have examined the predictors of the efficacy of rTMS on clinical outcome variables in various psychiatric disorders. These predictors often encompass the stimulated brain region’s location, electroencephalogram (EEG) activity patterns, potential morphological and neurophysiological anomalies, and individual patient’s response to treatment. Most commonly, rTMS is used in awake patients with depression, catatonia, and tinnitus. Interestingly, rTMS has also shown promise in inducing slow-wave oscillations in insomnia patients, opening avenues for future research into the potential beneficial effects of these oscillations on reports of non-restorative sleep. Furthermore, neurophysiological measures emerge as potential, disease-specific biomarkers, aiding in predicting treatment response and monitoring post-treatment changes. The study posits the convergence of neurophysiological biomarkers and individually tailored rTMS treatments as a gateway to a new era in psychiatric care. The potential of rTMS to induce slow-wave activity also surfaces as a significant contribution to personalized treatment approaches. Further investigations are called for to validate the imaging and electrophysiological biomarkers associated with rTMS. In conclusion, the potential for rTMS to significantly redefine treatment strategies through personalized approaches could enhance the outcomes in neuropsychiatric disorders.\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417823/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2023.943223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.943223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transcranial magnetic stimulation (TMS) is an innovative and non-invasive technique used in the diagnosis and treatment of psychiatric and neurological disorders. Repetitive TMS (rTMS) can modulate neuronal activity, neuroplasticity and arousal of the waking and sleeping brain, and, more generally, overall mental health. Numerous studies have examined the predictors of the efficacy of rTMS on clinical outcome variables in various psychiatric disorders. These predictors often encompass the stimulated brain region’s location, electroencephalogram (EEG) activity patterns, potential morphological and neurophysiological anomalies, and individual patient’s response to treatment. Most commonly, rTMS is used in awake patients with depression, catatonia, and tinnitus. Interestingly, rTMS has also shown promise in inducing slow-wave oscillations in insomnia patients, opening avenues for future research into the potential beneficial effects of these oscillations on reports of non-restorative sleep. Furthermore, neurophysiological measures emerge as potential, disease-specific biomarkers, aiding in predicting treatment response and monitoring post-treatment changes. The study posits the convergence of neurophysiological biomarkers and individually tailored rTMS treatments as a gateway to a new era in psychiatric care. The potential of rTMS to induce slow-wave activity also surfaces as a significant contribution to personalized treatment approaches. Further investigations are called for to validate the imaging and electrophysiological biomarkers associated with rTMS. In conclusion, the potential for rTMS to significantly redefine treatment strategies through personalized approaches could enhance the outcomes in neuropsychiatric disorders.