Dong Ho Kang, Sunjoo Ahn, Jung Woo Chae, Jin Sook Song
{"title":"两种磷酸二酯酶4抑制剂对脂多糖诱导的小鼠神经炎症的不同作用。","authors":"Dong Ho Kang, Sunjoo Ahn, Jung Woo Chae, Jin Sook Song","doi":"10.1186/s12868-023-00810-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation.</p><p><strong>Results: </strong>In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1β (IL-1β), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10<sup>-6</sup> cm/s) and moderate (3.72-7.18 × 10<sup>-6</sup> cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively.</p><p><strong>Conclusions: </strong>These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391911/pdf/","citationCount":"1","resultStr":"{\"title\":\"Differential effects of two phosphodiesterase 4 inhibitors against lipopolysaccharide-induced neuroinflammation in mice.\",\"authors\":\"Dong Ho Kang, Sunjoo Ahn, Jung Woo Chae, Jin Sook Song\",\"doi\":\"10.1186/s12868-023-00810-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation.</p><p><strong>Results: </strong>In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1β (IL-1β), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10<sup>-6</sup> cm/s) and moderate (3.72-7.18 × 10<sup>-6</sup> cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively.</p><p><strong>Conclusions: </strong>These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.</p>\",\"PeriodicalId\":9031,\"journal\":{\"name\":\"BMC Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391911/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12868-023-00810-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-023-00810-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Differential effects of two phosphodiesterase 4 inhibitors against lipopolysaccharide-induced neuroinflammation in mice.
Background: Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation.
Results: In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1β (IL-1β), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10-6 cm/s) and moderate (3.72-7.18 × 10-6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively.
Conclusions: These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.
期刊介绍:
BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.