Rubiceli Hernández-Peña, Eric Jonathan Maciel-Cruz, Lourdes Del Carmen Rizo-De La Torre, Francisco Javier Perea-Díaz, Bertha Ibarra-Cortés
{"title":"墨西哥铁剂治疗难治性患者中 TMPRSS6 催化域变体的遗传分析。","authors":"Rubiceli Hernández-Peña, Eric Jonathan Maciel-Cruz, Lourdes Del Carmen Rizo-De La Torre, Francisco Javier Perea-Díaz, Bertha Ibarra-Cortés","doi":"10.1093/labmed/lmad077","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To identify the TMPRSS6 gene variants in Mexican patients with iron treatment refractoriness, to describe hematological and iron profile parameters, and to use bioinformatic prediction and protein modeling tools to assess a possible biological impact for the detected missense variants.</p><p><strong>Methods: </strong>Nineteen patients referred with iron treatment refractoriness were studied. Peripheral blood was collected to determine hematic cytometry, iron profile, hemoglobin electrophoresis, and quantification. Molecular screening was carried out for exons 15 through 18 of the TMPRSS6 gene by Sanger sequencing and for frequent thalassemia variants by amplification-refractory mutation system-polymerase chain reaction (PCR) and gap-PCR. The biological impact of the detected missense variants was assessed using bioinformatic prediction and protein modeling tools.</p><p><strong>Results: </strong>We found 5 genetic variants in the matriptase-2 catalytic domain: 1 at intron-15/exon-16 junction (rs60484081) and 4 exonic, 3 missense (rs377054987, p.Gly626Asp; rs1384127820, p.Ser672Thr; rs855791, p.Val727Ala) and 1 synonymous (rs2235321, p.Tyr730=), with frequencies ranging from 0.18 to 0.53. No significant differences were observed in the hematological parameters or iron profile, considering type and number of variants. Bioinformatic predictions suggested a possible biological impact only for rs377054987.</p><p><strong>Conclusions: </strong>The TMPRSS6 variants observed in Mexican patients with oral iron treatment refractoriness have high frequencies; nevertheless, their relationship with hematological and iron profile parameters needs further research. The possible biological impact for rs377054987 is due to size and amino acid hydrophobicity changes and hydrogen bond modifications.</p>","PeriodicalId":17951,"journal":{"name":"Laboratory medicine","volume":" ","pages":"277-284"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic analysis of TMPRSS6 catalytic domain variants in Mexican patients with iron treatment refractoriness.\",\"authors\":\"Rubiceli Hernández-Peña, Eric Jonathan Maciel-Cruz, Lourdes Del Carmen Rizo-De La Torre, Francisco Javier Perea-Díaz, Bertha Ibarra-Cortés\",\"doi\":\"10.1093/labmed/lmad077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To identify the TMPRSS6 gene variants in Mexican patients with iron treatment refractoriness, to describe hematological and iron profile parameters, and to use bioinformatic prediction and protein modeling tools to assess a possible biological impact for the detected missense variants.</p><p><strong>Methods: </strong>Nineteen patients referred with iron treatment refractoriness were studied. Peripheral blood was collected to determine hematic cytometry, iron profile, hemoglobin electrophoresis, and quantification. Molecular screening was carried out for exons 15 through 18 of the TMPRSS6 gene by Sanger sequencing and for frequent thalassemia variants by amplification-refractory mutation system-polymerase chain reaction (PCR) and gap-PCR. The biological impact of the detected missense variants was assessed using bioinformatic prediction and protein modeling tools.</p><p><strong>Results: </strong>We found 5 genetic variants in the matriptase-2 catalytic domain: 1 at intron-15/exon-16 junction (rs60484081) and 4 exonic, 3 missense (rs377054987, p.Gly626Asp; rs1384127820, p.Ser672Thr; rs855791, p.Val727Ala) and 1 synonymous (rs2235321, p.Tyr730=), with frequencies ranging from 0.18 to 0.53. No significant differences were observed in the hematological parameters or iron profile, considering type and number of variants. Bioinformatic predictions suggested a possible biological impact only for rs377054987.</p><p><strong>Conclusions: </strong>The TMPRSS6 variants observed in Mexican patients with oral iron treatment refractoriness have high frequencies; nevertheless, their relationship with hematological and iron profile parameters needs further research. The possible biological impact for rs377054987 is due to size and amino acid hydrophobicity changes and hydrogen bond modifications.</p>\",\"PeriodicalId\":17951,\"journal\":{\"name\":\"Laboratory medicine\",\"volume\":\" \",\"pages\":\"277-284\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/labmed/lmad077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/labmed/lmad077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic analysis of TMPRSS6 catalytic domain variants in Mexican patients with iron treatment refractoriness.
Objective: To identify the TMPRSS6 gene variants in Mexican patients with iron treatment refractoriness, to describe hematological and iron profile parameters, and to use bioinformatic prediction and protein modeling tools to assess a possible biological impact for the detected missense variants.
Methods: Nineteen patients referred with iron treatment refractoriness were studied. Peripheral blood was collected to determine hematic cytometry, iron profile, hemoglobin electrophoresis, and quantification. Molecular screening was carried out for exons 15 through 18 of the TMPRSS6 gene by Sanger sequencing and for frequent thalassemia variants by amplification-refractory mutation system-polymerase chain reaction (PCR) and gap-PCR. The biological impact of the detected missense variants was assessed using bioinformatic prediction and protein modeling tools.
Results: We found 5 genetic variants in the matriptase-2 catalytic domain: 1 at intron-15/exon-16 junction (rs60484081) and 4 exonic, 3 missense (rs377054987, p.Gly626Asp; rs1384127820, p.Ser672Thr; rs855791, p.Val727Ala) and 1 synonymous (rs2235321, p.Tyr730=), with frequencies ranging from 0.18 to 0.53. No significant differences were observed in the hematological parameters or iron profile, considering type and number of variants. Bioinformatic predictions suggested a possible biological impact only for rs377054987.
Conclusions: The TMPRSS6 variants observed in Mexican patients with oral iron treatment refractoriness have high frequencies; nevertheless, their relationship with hematological and iron profile parameters needs further research. The possible biological impact for rs377054987 is due to size and amino acid hydrophobicity changes and hydrogen bond modifications.