实现独立于磁共振造影剂的合成 CT 生成

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Attila Simkó , Mikael Bylund , Gustav Jönsson , Tommy Löfstedt , Anders Garpebring , Tufve Nyholm , Joakim Jonsson
{"title":"实现独立于磁共振造影剂的合成 CT 生成","authors":"Attila Simkó ,&nbsp;Mikael Bylund ,&nbsp;Gustav Jönsson ,&nbsp;Tommy Löfstedt ,&nbsp;Anders Garpebring ,&nbsp;Tufve Nyholm ,&nbsp;Joakim Jonsson","doi":"10.1016/j.zemedi.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>The use of synthetic CT (sCT) in the radiotherapy workflow would reduce costs and scan time while removing the uncertainties around working with both MR and CT modalities. The performance of deep learning (DL) solutions for sCT generation is steadily increasing, however most proposed methods were trained and validated on private datasets of a single contrast from a single scanner. Such solutions might not perform equally well on other datasets, limiting their general usability and therefore value. Additionally, functional evaluations of sCTs such as dosimetric comparisons with CT-based dose calculations better show the impact of the methods, but the evaluations are more labor intensive than pixel-wise metrics.</p><p>To improve the generalization of an sCT model, we propose to incorporate a pre-trained DL model to pre-process the input MR images by generating artificial proton density, <span><math><mrow><mi>T</mi><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mn>2</mn></mrow></math></span> maps (<em>i.e.</em> contrast-independent quantitative maps), which are then used for sCT generation. Using a dataset of only <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> MR images, the robustness towards input MR contrasts of this approach is compared to a model that was trained using the MR images directly. We evaluate the generated sCTs using pixel-wise metrics and calculating mean radiological depths, as an approximation of the mean delivered dose.</p><p>On <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> images acquired with the same settings as the training dataset, there was no significant difference between the performance of the models. However, when evaluated on <span><math><mrow><mi>T</mi><mn>1</mn><mi>w</mi></mrow></math></span> images, and a wide range of other contrasts and scanners from both public and private datasets, our approach outperforms the baseline model.</p><p>Using a dataset of <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> MR images, our proposed model implements synthetic quantitative maps to generate sCT images, improving the generalization towards other contrasts. Our code and trained models are publicly available.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000831/pdfft?md5=3e1f7674de1352aa91dfccab724c3a83&pid=1-s2.0-S0939388923000831-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards MR contrast independent synthetic CT generation\",\"authors\":\"Attila Simkó ,&nbsp;Mikael Bylund ,&nbsp;Gustav Jönsson ,&nbsp;Tommy Löfstedt ,&nbsp;Anders Garpebring ,&nbsp;Tufve Nyholm ,&nbsp;Joakim Jonsson\",\"doi\":\"10.1016/j.zemedi.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of synthetic CT (sCT) in the radiotherapy workflow would reduce costs and scan time while removing the uncertainties around working with both MR and CT modalities. The performance of deep learning (DL) solutions for sCT generation is steadily increasing, however most proposed methods were trained and validated on private datasets of a single contrast from a single scanner. Such solutions might not perform equally well on other datasets, limiting their general usability and therefore value. Additionally, functional evaluations of sCTs such as dosimetric comparisons with CT-based dose calculations better show the impact of the methods, but the evaluations are more labor intensive than pixel-wise metrics.</p><p>To improve the generalization of an sCT model, we propose to incorporate a pre-trained DL model to pre-process the input MR images by generating artificial proton density, <span><math><mrow><mi>T</mi><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mn>2</mn></mrow></math></span> maps (<em>i.e.</em> contrast-independent quantitative maps), which are then used for sCT generation. Using a dataset of only <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> MR images, the robustness towards input MR contrasts of this approach is compared to a model that was trained using the MR images directly. We evaluate the generated sCTs using pixel-wise metrics and calculating mean radiological depths, as an approximation of the mean delivered dose.</p><p>On <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> images acquired with the same settings as the training dataset, there was no significant difference between the performance of the models. However, when evaluated on <span><math><mrow><mi>T</mi><mn>1</mn><mi>w</mi></mrow></math></span> images, and a wide range of other contrasts and scanners from both public and private datasets, our approach outperforms the baseline model.</p><p>Using a dataset of <span><math><mrow><mi>T</mi><mn>2</mn><mi>w</mi></mrow></math></span> MR images, our proposed model implements synthetic quantitative maps to generate sCT images, improving the generalization towards other contrasts. Our code and trained models are publicly available.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000831/pdfft?md5=3e1f7674de1352aa91dfccab724c3a83&pid=1-s2.0-S0939388923000831-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000831\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000831","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在放射治疗工作流程中使用合成 CT(sCT)可以降低成本,缩短扫描时间,同时消除 MR 和 CT 两种模式工作中的不确定性。用于生成 sCT 的深度学习(DL)解决方案的性能正在稳步提高,但大多数提出的方法都是在来自单一扫描仪的单一对比度私人数据集上进行训练和验证的。这些解决方案在其他数据集上的表现可能不尽相同,从而限制了它们的普遍可用性和价值。为了提高 sCT 模型的通用性,我们建议采用预先训练的 DL 模型,通过生成人工质子密度、T1 和 T2 图(即对比度无关的定量图)对输入的 MR 图像进行预处理,然后用于生成 sCT。我们使用一个仅有 T2w 磁共振图像的数据集,将这种方法对输入磁共振对比度的鲁棒性与直接使用磁共振图像训练的模型进行了比较。我们使用像素度量和计算平均放射深度来评估生成的 sCT,作为平均投放剂量的近似值。然而,在对 T1w 图像以及来自公共和私人数据集的各种其他对比度和扫描仪进行评估时,我们的方法优于基线模型。利用 T2w MR 图像数据集,我们提出的模型实现了合成定量图,以生成 sCT 图像,从而提高了对其他对比度的通用性。我们的代码和训练有素的模型可公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards MR contrast independent synthetic CT generation

The use of synthetic CT (sCT) in the radiotherapy workflow would reduce costs and scan time while removing the uncertainties around working with both MR and CT modalities. The performance of deep learning (DL) solutions for sCT generation is steadily increasing, however most proposed methods were trained and validated on private datasets of a single contrast from a single scanner. Such solutions might not perform equally well on other datasets, limiting their general usability and therefore value. Additionally, functional evaluations of sCTs such as dosimetric comparisons with CT-based dose calculations better show the impact of the methods, but the evaluations are more labor intensive than pixel-wise metrics.

To improve the generalization of an sCT model, we propose to incorporate a pre-trained DL model to pre-process the input MR images by generating artificial proton density, T1 and T2 maps (i.e. contrast-independent quantitative maps), which are then used for sCT generation. Using a dataset of only T2w MR images, the robustness towards input MR contrasts of this approach is compared to a model that was trained using the MR images directly. We evaluate the generated sCTs using pixel-wise metrics and calculating mean radiological depths, as an approximation of the mean delivered dose.

On T2w images acquired with the same settings as the training dataset, there was no significant difference between the performance of the models. However, when evaluated on T1w images, and a wide range of other contrasts and scanners from both public and private datasets, our approach outperforms the baseline model.

Using a dataset of T2w MR images, our proposed model implements synthetic quantitative maps to generate sCT images, improving the generalization towards other contrasts. Our code and trained models are publicly available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信