低三磷酸脱氧核苷酸浓度下核糖体2' o甲基化的定量反转录PCR位点特异性分析。

IF 2.2 4区 工程技术 Q3 BIOCHEMICAL RESEARCH METHODS
Daniela Barros-Silva, Johan Tsui, Carmen Jerónimo, Guido Jenster, Elena S Martens-Uzunova
{"title":"低三磷酸脱氧核苷酸浓度下核糖体2' o甲基化的定量反转录PCR位点特异性分析。","authors":"Daniela Barros-Silva,&nbsp;Johan Tsui,&nbsp;Carmen Jerónimo,&nbsp;Guido Jenster,&nbsp;Elena S Martens-Uzunova","doi":"10.2144/btn-2022-0122","DOIUrl":null,"url":null,"abstract":"<p><p>Ribose 2'O-methylation (Nm, ribomethylation) is the most abundant RNA modification present in rRNA. It has been shown that alterations in ribosomal 2'O-methylation at individual Nm sites likely reflect regulated cellular processes. Although several analytical approaches for Nm detection and profiling have been developed, a simple and affordable method for the screening and measurement of individual Nm sites in large numbers of tissue samples is required to examine their potential for clinical translation. Here, we describe a new quantitative reverse transcription PCR-based method that can sensitively assess ribomethylation levels at specific rRNA sites at single-nucleotide resolution in low input amounts of total RNA.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-specific analysis of ribosomal 2'O-methylation by quantitative reverse transcription PCR under low deoxynucleotide triphosphate concentrations.\",\"authors\":\"Daniela Barros-Silva,&nbsp;Johan Tsui,&nbsp;Carmen Jerónimo,&nbsp;Guido Jenster,&nbsp;Elena S Martens-Uzunova\",\"doi\":\"10.2144/btn-2022-0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ribose 2'O-methylation (Nm, ribomethylation) is the most abundant RNA modification present in rRNA. It has been shown that alterations in ribosomal 2'O-methylation at individual Nm sites likely reflect regulated cellular processes. Although several analytical approaches for Nm detection and profiling have been developed, a simple and affordable method for the screening and measurement of individual Nm sites in large numbers of tissue samples is required to examine their potential for clinical translation. Here, we describe a new quantitative reverse transcription PCR-based method that can sensitively assess ribomethylation levels at specific rRNA sites at single-nucleotide resolution in low input amounts of total RNA.</p>\",\"PeriodicalId\":8945,\"journal\":{\"name\":\"BioTechniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTechniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2144/btn-2022-0122\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2144/btn-2022-0122","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

核糖2' o -甲基化(Nm,核糖甲基化)是rRNA中最丰富的RNA修饰。研究表明,核糖体2' o甲基化在单个Nm位点的改变可能反映了受调节的细胞过程。虽然已经开发了几种Nm检测和分析方法,但需要一种简单且负担得起的方法来筛选和测量大量组织样本中的单个Nm位点,以检查其临床转化的潜力。在这里,我们描述了一种新的基于定量逆转录pcr的方法,该方法可以在低总RNA输入量的单核苷酸分辨率下敏感地评估特定rRNA位点的核糖甲基化水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Site-specific analysis of ribosomal 2'O-methylation by quantitative reverse transcription PCR under low deoxynucleotide triphosphate concentrations.

Ribose 2'O-methylation (Nm, ribomethylation) is the most abundant RNA modification present in rRNA. It has been shown that alterations in ribosomal 2'O-methylation at individual Nm sites likely reflect regulated cellular processes. Although several analytical approaches for Nm detection and profiling have been developed, a simple and affordable method for the screening and measurement of individual Nm sites in large numbers of tissue samples is required to examine their potential for clinical translation. Here, we describe a new quantitative reverse transcription PCR-based method that can sensitively assess ribomethylation levels at specific rRNA sites at single-nucleotide resolution in low input amounts of total RNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioTechniques
BioTechniques 工程技术-生化研究方法
CiteScore
4.40
自引率
0.00%
发文量
68
审稿时长
3.3 months
期刊介绍: BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies. Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers: Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices Surveys of technical approaches related to broad fields of research Reviews discussing advancements in techniques and methods related to broad fields of research Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信