Thanai Pongdee, Alexis Berry, Lauren Wetzler, Xiaoping Sun, Lauren Thumm, Pryscilla Yoon, Fei Li Kuang, Michelle Makiya, Gregory Constantine, Paneez Khoury, Esther Rheinbay, Andrew A Lane, Irina Maric, Amy D Klion
{"title":"荧光原位杂交法检测FIP1L1::PDGFRA假阴性是诊断延误的常见原因。","authors":"Thanai Pongdee, Alexis Berry, Lauren Wetzler, Xiaoping Sun, Lauren Thumm, Pryscilla Yoon, Fei Li Kuang, Michelle Makiya, Gregory Constantine, Paneez Khoury, Esther Rheinbay, Andrew A Lane, Irina Maric, Amy D Klion","doi":"10.1159/000528046","DOIUrl":null,"url":null,"abstract":"<p><p>The imatinib-sensitive fusion gene FIP1L1::PDGFRA is the most frequent molecular abnormality identified in patients with eosinophilic myeloid neoplasms. Rapid recognition of this mutation is essential given the poor prognosis of PDGFRA-associated myeloid neoplasms prior to the availability of imatinib therapy. We report a case of a patient in whom delayed diagnosis resulted in cardiac transplantation for eosinophilic endomyocardial fibrosis. The delay in diagnosis was due, in part, to a false-negative result in fluorescence in situ hybridization (FISH) testing for FIP1L1::PDGFRA. To explore this further, we examined our cohort of patients presenting with confirmed or suspected eosinophilic myeloid neoplasms and found 8 additional patients with negative FISH results despite a positive reverse-transcriptase polymerase chain reaction test for FIP1L1::PDGFRA. More importantly, false-negative FISH results delayed the median time to imatinib treatment by 257 days. These data emphasize the importance of empiric imatinib therapy in patients with clinical features suggestive of PDGFRA-associated disease.</p>","PeriodicalId":6981,"journal":{"name":"Acta Haematologica","volume":"146 4","pages":"316-321"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809802/pdf/","citationCount":"0","resultStr":"{\"title\":\"False-Negative Testing for FIP1L1::PDGFRA by Fluorescence in situ Hybridization Is a Frequent Cause of Diagnostic Delay.\",\"authors\":\"Thanai Pongdee, Alexis Berry, Lauren Wetzler, Xiaoping Sun, Lauren Thumm, Pryscilla Yoon, Fei Li Kuang, Michelle Makiya, Gregory Constantine, Paneez Khoury, Esther Rheinbay, Andrew A Lane, Irina Maric, Amy D Klion\",\"doi\":\"10.1159/000528046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The imatinib-sensitive fusion gene FIP1L1::PDGFRA is the most frequent molecular abnormality identified in patients with eosinophilic myeloid neoplasms. Rapid recognition of this mutation is essential given the poor prognosis of PDGFRA-associated myeloid neoplasms prior to the availability of imatinib therapy. We report a case of a patient in whom delayed diagnosis resulted in cardiac transplantation for eosinophilic endomyocardial fibrosis. The delay in diagnosis was due, in part, to a false-negative result in fluorescence in situ hybridization (FISH) testing for FIP1L1::PDGFRA. To explore this further, we examined our cohort of patients presenting with confirmed or suspected eosinophilic myeloid neoplasms and found 8 additional patients with negative FISH results despite a positive reverse-transcriptase polymerase chain reaction test for FIP1L1::PDGFRA. More importantly, false-negative FISH results delayed the median time to imatinib treatment by 257 days. These data emphasize the importance of empiric imatinib therapy in patients with clinical features suggestive of PDGFRA-associated disease.</p>\",\"PeriodicalId\":6981,\"journal\":{\"name\":\"Acta Haematologica\",\"volume\":\"146 4\",\"pages\":\"316-321\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809802/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Haematologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000528046\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000528046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
False-Negative Testing for FIP1L1::PDGFRA by Fluorescence in situ Hybridization Is a Frequent Cause of Diagnostic Delay.
The imatinib-sensitive fusion gene FIP1L1::PDGFRA is the most frequent molecular abnormality identified in patients with eosinophilic myeloid neoplasms. Rapid recognition of this mutation is essential given the poor prognosis of PDGFRA-associated myeloid neoplasms prior to the availability of imatinib therapy. We report a case of a patient in whom delayed diagnosis resulted in cardiac transplantation for eosinophilic endomyocardial fibrosis. The delay in diagnosis was due, in part, to a false-negative result in fluorescence in situ hybridization (FISH) testing for FIP1L1::PDGFRA. To explore this further, we examined our cohort of patients presenting with confirmed or suspected eosinophilic myeloid neoplasms and found 8 additional patients with negative FISH results despite a positive reverse-transcriptase polymerase chain reaction test for FIP1L1::PDGFRA. More importantly, false-negative FISH results delayed the median time to imatinib treatment by 257 days. These data emphasize the importance of empiric imatinib therapy in patients with clinical features suggestive of PDGFRA-associated disease.
期刊介绍:
''Acta Haematologica'' is a well-established and internationally recognized clinically-oriented journal featuring balanced, wide-ranging coverage of current hematology research. A wealth of information on such problems as anemia, leukemia, lymphoma, multiple myeloma, hereditary disorders, blood coagulation, growth factors, hematopoiesis and differentiation is contained in first-rate basic and clinical papers some of which are accompanied by editorial comments by eminent experts. These are supplemented by short state-of-the-art communications, reviews and correspondence as well as occasional special issues devoted to ‘hot topics’ in hematology. These will keep the practicing hematologist well informed of the new developments in the field.