D Castillo-Barnes, F J Martinez-Murcia, C Jimenez-Mesa, J E Arco, D Salas-Gonzalez, J Ramírez, J M Górriz
{"title":"利用多模态数据诊断帕金森病的非线性加权集成学习模型。","authors":"D Castillo-Barnes, F J Martinez-Murcia, C Jimenez-Mesa, J E Arco, D Salas-Gonzalez, J Ramírez, J M Górriz","doi":"10.1142/S0129065723500417","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its triggers are still not clear, they may be due to a combination of different types of biomarkers measured through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning methodology trained to identify and penalize input sources with low classification rates and/ or high-variability. This proposal improves results published in recent years and provides an accurate solution not only from the point of view of image preprocessing (including a comparison between different intensity preservation techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also introduced a bagging classification schema for scenarios with unbalanced data. As shown by our results, the CAD proposal is able to detect PD with [Formula: see text] of balanced accuracy, and opens up the possibility of combining any number of input data sources relevant for PD.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 8","pages":"2350041"},"PeriodicalIF":6.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data.\",\"authors\":\"D Castillo-Barnes, F J Martinez-Murcia, C Jimenez-Mesa, J E Arco, D Salas-Gonzalez, J Ramírez, J M Górriz\",\"doi\":\"10.1142/S0129065723500417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its triggers are still not clear, they may be due to a combination of different types of biomarkers measured through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning methodology trained to identify and penalize input sources with low classification rates and/ or high-variability. This proposal improves results published in recent years and provides an accurate solution not only from the point of view of image preprocessing (including a comparison between different intensity preservation techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also introduced a bagging classification schema for scenarios with unbalanced data. As shown by our results, the CAD proposal is able to detect PD with [Formula: see text] of balanced accuracy, and opens up the possibility of combining any number of input data sources relevant for PD.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"33 8\",\"pages\":\"2350041\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500417\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500417","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease Using Multimodal Data.
Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its triggers are still not clear, they may be due to a combination of different types of biomarkers measured through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning methodology trained to identify and penalize input sources with low classification rates and/ or high-variability. This proposal improves results published in recent years and provides an accurate solution not only from the point of view of image preprocessing (including a comparison between different intensity preservation techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also introduced a bagging classification schema for scenarios with unbalanced data. As shown by our results, the CAD proposal is able to detect PD with [Formula: see text] of balanced accuracy, and opens up the possibility of combining any number of input data sources relevant for PD.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.