Guiyan Zhao, Zhe Liu, Jinqiang Quan, Jun Sun, Lanlan Li, Junhao Lu
{"title":"miR-8159-x在虹鳟(Oncorhynchus mykiss)热应激反应中的潜在作用","authors":"Guiyan Zhao, Zhe Liu, Jinqiang Quan, Jun Sun, Lanlan Li, Junhao Lu","doi":"10.1016/j.cbpb.2023.110877","DOIUrl":null,"url":null,"abstract":"<div><p>Rainbow trout (<em>Oncorhynchus mykiss</em>) is a representative species of cold-water fish. Elevated temperatures during summer often result in significant high mortality rates. MicroRNAs (miRNAs) are class of small non-coding RNAs that play a crucial role as post-transcriptional regulators in various biological processes. Emerging evidence suggests that miRNAs are important regulators role during heat stress. Analyzing previously obtained miRNA-sequencing data, we observed substantial down regulation of miR-8159-x in the liver tissue of heat stressed rainbow trout. In this study, we conducted a dual luciferase reporter assay to validate that miR-8159-x target, a key gene involved in heat stress in rainbow trout. By examining the expression patterns of miR-8159-x and <em>hsp90a1</em> in the liver tissue at 18 °C (CG) and 24 °C (HS) groups, we propose that miR-8159-x may negatively regulate <em>hsp90a1</em>. Furthermore, <em>in vitro</em> hepatocyte assay, transfection with miR-8159-x mimics significantly reduced the expression level of <em>hsp90a1</em>, whereas transfection with a miR-8159-x inhibitor yielded the opposite effect. Additionally, overexpression of miR-8159-x inhibited cell proliferation and induced apoptosis in normal rainbow trout hepatocytes. We further investigated the effects of miR-8159-x overexpression or inhibition on the mRNA and protein levels of the target gene <em>hsp90a1</em> under heat stress conditions. In conclusion, our findings suggest that miR-8159-x participates in the biological response to heat stress by targeting <em>hsp90a1</em>. These results contribute to a better understanding of the molecular mechanisms underlying heat stress in rainbow trout and provide valuable insights for future research.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss)\",\"authors\":\"Guiyan Zhao, Zhe Liu, Jinqiang Quan, Jun Sun, Lanlan Li, Junhao Lu\",\"doi\":\"10.1016/j.cbpb.2023.110877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rainbow trout (<em>Oncorhynchus mykiss</em>) is a representative species of cold-water fish. Elevated temperatures during summer often result in significant high mortality rates. MicroRNAs (miRNAs) are class of small non-coding RNAs that play a crucial role as post-transcriptional regulators in various biological processes. Emerging evidence suggests that miRNAs are important regulators role during heat stress. Analyzing previously obtained miRNA-sequencing data, we observed substantial down regulation of miR-8159-x in the liver tissue of heat stressed rainbow trout. In this study, we conducted a dual luciferase reporter assay to validate that miR-8159-x target, a key gene involved in heat stress in rainbow trout. By examining the expression patterns of miR-8159-x and <em>hsp90a1</em> in the liver tissue at 18 °C (CG) and 24 °C (HS) groups, we propose that miR-8159-x may negatively regulate <em>hsp90a1</em>. Furthermore, <em>in vitro</em> hepatocyte assay, transfection with miR-8159-x mimics significantly reduced the expression level of <em>hsp90a1</em>, whereas transfection with a miR-8159-x inhibitor yielded the opposite effect. Additionally, overexpression of miR-8159-x inhibited cell proliferation and induced apoptosis in normal rainbow trout hepatocytes. We further investigated the effects of miR-8159-x overexpression or inhibition on the mRNA and protein levels of the target gene <em>hsp90a1</em> under heat stress conditions. In conclusion, our findings suggest that miR-8159-x participates in the biological response to heat stress by targeting <em>hsp90a1</em>. These results contribute to a better understanding of the molecular mechanisms underlying heat stress in rainbow trout and provide valuable insights for future research.</p></div>\",\"PeriodicalId\":55236,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495923000520\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495923000520","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss)
Rainbow trout (Oncorhynchus mykiss) is a representative species of cold-water fish. Elevated temperatures during summer often result in significant high mortality rates. MicroRNAs (miRNAs) are class of small non-coding RNAs that play a crucial role as post-transcriptional regulators in various biological processes. Emerging evidence suggests that miRNAs are important regulators role during heat stress. Analyzing previously obtained miRNA-sequencing data, we observed substantial down regulation of miR-8159-x in the liver tissue of heat stressed rainbow trout. In this study, we conducted a dual luciferase reporter assay to validate that miR-8159-x target, a key gene involved in heat stress in rainbow trout. By examining the expression patterns of miR-8159-x and hsp90a1 in the liver tissue at 18 °C (CG) and 24 °C (HS) groups, we propose that miR-8159-x may negatively regulate hsp90a1. Furthermore, in vitro hepatocyte assay, transfection with miR-8159-x mimics significantly reduced the expression level of hsp90a1, whereas transfection with a miR-8159-x inhibitor yielded the opposite effect. Additionally, overexpression of miR-8159-x inhibited cell proliferation and induced apoptosis in normal rainbow trout hepatocytes. We further investigated the effects of miR-8159-x overexpression or inhibition on the mRNA and protein levels of the target gene hsp90a1 under heat stress conditions. In conclusion, our findings suggest that miR-8159-x participates in the biological response to heat stress by targeting hsp90a1. These results contribute to a better understanding of the molecular mechanisms underlying heat stress in rainbow trout and provide valuable insights for future research.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.