利用组织学研究细胞结构对灰质弥散核磁共振成像测量的贡献。

Frontiers in neuroimaging Pub Date : 2022-09-13 eCollection Date: 2022-01-01 DOI:10.3389/fnimg.2022.947526
Madhura Baxi, Suheyla Cetin-Karayumak, George Papadimitriou, Nikos Makris, Andre van der Kouwe, Bruce Jenkins, Tara L Moore, Douglas L Rosene, Marek Kubicki, Yogesh Rathi
{"title":"利用组织学研究细胞结构对灰质弥散核磁共振成像测量的贡献。","authors":"Madhura Baxi, Suheyla Cetin-Karayumak, George Papadimitriou, Nikos Makris, Andre van der Kouwe, Bruce Jenkins, Tara L Moore, Douglas L Rosene, Marek Kubicki, Yogesh Rathi","doi":"10.3389/fnimg.2022.947526","DOIUrl":null,"url":null,"abstract":"<p><p>Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive <i>in-vivo</i> imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between <i>in-vivo</i> dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"1 ","pages":"947526"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406256/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology.\",\"authors\":\"Madhura Baxi, Suheyla Cetin-Karayumak, George Papadimitriou, Nikos Makris, Andre van der Kouwe, Bruce Jenkins, Tara L Moore, Douglas L Rosene, Marek Kubicki, Yogesh Rathi\",\"doi\":\"10.3389/fnimg.2022.947526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive <i>in-vivo</i> imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between <i>in-vivo</i> dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"1 \",\"pages\":\"947526\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406256/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2022.947526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2022.947526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,尸检研究被认为是在细胞水平上研究大脑结构的黄金标准。要研究人类发育、衰老或疾病治疗过程中的细胞变化,就需要弥散核磁共振成像(dMRI)等非侵入性体内成像方法。然而,dMRI 测量只是间接测量,需要在灰质(GM)中验证其对潜在细胞结构的敏感性,而这一点一直缺乏。因此,在本研究中,我们直接比较了体内 dMRI 测量和从同四只恒河猴身上获取的组织学数据。利用 dMRI 数据计算了九个细胞结构不同的 GM 区域的扩散张量成像分数各向异性和踪迹的平均值和异质性,以及双指数模型得出的平均平方位移(MSD)和返原概率。将 DMRI 测量值与相应的组织学测量值(细胞区域密度的区域平均值和异质性)进行了比较。结果表明,踪迹和 MSD 测量的平均性和异质性对潜在的细胞结构(细胞面积密度)很敏感,并能捕捉到细胞组成和组织的不同方面。因此,在未来研究与发育和衰老有关的基因组细胞结构变化以及临床研究中的异常细胞病理学时,痕迹和 MSD 将被证明是有价值的非侵入性成像生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology.

Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology.

Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology.

Investigating the contribution of cytoarchitecture to diffusion MRI measures in gray matter using histology.

Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信